脑机接口 (BCI) 为无法使用声音或手势的个体开辟了交流的途径。无声语音接口就是这样一种 BCI 方法,它可以提供一种与外部世界连接的变革性方式。然而,由于数据稀缺以及脑信号中缺乏想象语音的明确起点和终点等原因,想象语音解码的性能相当低。我们研究是否可以通过两种方式使用来自清晰语音的脑电图 (EEG) 信号来改善想象语音解码:我们研究是否可以使用清晰语音 EEG 信号来预测想象语音的终点,并使用清晰语音 EEG 作为与说话者无关的想象元音分类的额外训练数据。我们的结果表明,使用来自清晰语音的 EEG 数据并不能改善想象语音中元音的分类,这可能是因为说话者之间的 EEG 信号变化很大。索引术语:脑机接口、隐蔽(想象)语音、脑电图 (EEG)。
摘要 先前的研究提出了各种环境可能影响语言特征出现的机制。例如,干燥的空气可能导致对音高进行更费力的精确控制,从而影响依赖于音高的语言特征的出现,例如词汇声调或元音库。对这些提议的批评指出,存在需要控制的历史和地理混杂因素。我们采用因果推理的方法来解决这个问题,以设计迄今为止对该理论最详细的测试。我们分析了班图语系的语言,使用先前的地理-系统发育关系树来确定语言的使用地点和时间。这将与从历史气候模型中获取的当时和地点的湿度估计值相结合。然后,我们在因果路径模型中估计因果关系的强度,并控制遗传和借用的各种影响。我们没有发现任何证据支持先前关于湿度影响词汇声调出现的说法。这项研究表明,使用因果推理方法我们可以检验有关语言文化演变的复杂因果关系。
2 AI工具评论5 2.1写作和(文本)内容创建助手。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 2.1.1 Longshot AI。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 7 2.1.2 hupotenuse ai。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。6 2.1.1 Longshot AI。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 2.1.2 hupotenuse ai。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 2.1.3 jasper。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 2.1.4 Copy.ai. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 10 2.1.5写作。 。 。 。 。 。 。 。 。9 2.1.4 Copy.ai.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 2.1.5写作。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 2.1.6简化。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 2.1.7语法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 2.1.8概念AI。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 2.1.9深色。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 2.1.10粘性AI。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 2.2会议。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 2.2.1 TL; DV。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 2.2.2超级鼻。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 2.2.3元音。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>20 2.2.4等待室。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>21 2.2.5水獭AI。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>22 2. 2.6 NVIDIA广播。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。23 2.2.7鹦鹉AI。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24 2.2.8 Firefliesai。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。24 2.2.8 Firefliesai。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。25 2.2.9 Avoma。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 26 2.2.10 Meetgeek。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 27 2.2.11 fathom。 。 。 。 。 。 。 。 。 。 。25 2.2.9 Avoma。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26 2.2.10 Meetgeek。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。27 2.2.11 fathom。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。28 2.2.12 sembly。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。29 2.3演示文稿。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。30 2.3.1 Decktopus ai。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。31 2.3.2美化AI。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。32 2.3.3演示文稿AI。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。33 2.3.4 TOME AI。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 34 2.3.5 sendsteps。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。33 2.3.4 TOME AI。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。34 2.3.5 sendsteps。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>35 2.4语音生成。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>36 2.4.1 lovoai。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>37 2.4.2 Murfai。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>38 2.4.3 Elevenlabs。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>39 2.4.4 Play.ht。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>40 2.4.5语音。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>41 2.4.6 ListNrr。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>42 2.5视频生成。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>43 div>
摘要:用脑电图(EEG)信号使用想象的语音是脑部计算机界面(BCI)的有前途的场,它寻求与语言和设备或机器相关的脑皮质区域之间的通信。然而,这种大脑过程的复杂性使这类信号的分析和分类是相关的研究主题。这项研究的目标是:开发一种基于深度学习(DL)的新算法,称为CNNEEG1-1,以识别想象中的元音任务中的脑电图信号;创建一个想象中的语音数据库,其中50个主题专门从事西班牙语(/a/,/e/,/i/,/,/o/,/u/)的想象元音;并使用开放访问数据库(BD1)以及新开发的数据库(BD2)将CNNEEG1-1算法的性能与DL浅CNN和EEGNET基准算法的性能进行对比。在这项研究中,进行了方差的混合方差分析,以评估所提出算法的受试者内和受试者间训练。结果表明,对于受主体内的训练分析,浅CNN,EEGNET和CNNEEG1-1的最佳性能在对想象中的元音(/a/a/a,/e/,/i/,/i/,/o/,/u/)进行分类时,由CNNEEG1-1展出,由CNNEEG1-1展示为65.62%的cnneeg1-1 data for bd and bd and bd and and bd and and bd and and bd bdse ands的55份数为89%。
运动,动作的动作,运动迟缓,平衡差,依赖运动减少以及在说话,遗传和便秘期间的面部表情变化(9,10)。此外,PD中痴呆症的风险约为相同年龄和性别的对照组的6至8倍,长期患病率约为80%(11)。语音障碍也很普遍,包括音质肌音障碍,语音障碍,发音和速率以及响度降低,元音集中和不精确的辅音(10,12,13)。除了身体问题外,这些患者还会出现并发症,例如抑郁,焦虑,精神困扰症状和冷漠,每种都会影响患者的生活质量(14,15)。当前,PD没有简单易用的确定性治疗方法。因此,PD在家里或医院对看护人构成了许多挑战。如果护理人员是患者的配偶,他们经常被迫改变角色,必须长期扮演其配偶的角色(16,17)。在住院治疗的情况下,应旨在改善这些患者的健康状况并防止住院并发症(18-21)。改善住院患者健康的一种方法是在ICU中提供医疗和护理,这就是为什么与呼吸机相关的指标是必不可少的考虑因素的原因(22-25)。
我们开发了一项基于语音的自定步调光标控制任务,以在单独发出音素(即元音、鼻音和摩擦音)时收集相应的颅内神经数据。两名植入颅内深度电极以进行临床癫痫监测的患者通过实时处理麦克风输入执行闭环语音光标控制。在事后数据分析中,我们搜索了与非特定语音或特定音素的发生相关的神经特征。与之前的研究一致,我们在颞上回的多个记录点观察到了对语音的开始和持续反应。基于高达 200 Hz 的窄频带中的不同激活模式,我们以 91% 的准确率(机会水平:50%)跟踪语音活动,并以 68% 的准确率(机会水平:20%)将单个话语归类为五个音素之一。我们提出,我们的框架可以扩展到其他音素,以更好地描述在没有语言背景的情况下产生和感知语音的神经生理机制。总的来说,我们的研究结果为使用颅内电极开发语音脑机接口提供了补充证据和信息。索引词:音素识别、颅内电极、语音开始、持续语音、脑机接口
抽象目标。对音频的分类感知(CP)对于了解人脑认为尽管声学特性的广泛可变性是如何感知语音的至关重要。在这里,我们研究了反映语音CP的听觉神经活动的时空特征(即将语音原型与模棱两可的语音分开)。方法。我们记录了64次通道脑电图,因为听众沿声音连续体迅速分类元音。我们使用支持向量机分类器和稳定性选择来确定何时何地在大脑CP中通过对事件相关电位的源级分析在空间和时间上最好地解码。主要结果。我们发现早期(120毫秒)全脑数据解码语音类别(即原型与模棱两可的代币)的精度为95.16%(曲线下的面积为95.14%; F 1分95.00%)。在左半球(LH)和右半球(RH)响应上进行单独的分析表明,LH解码比RH更准确,更早(89.03%vs. 86.45%的精度; 140 ms vs. 200 ms)。稳定性(特征)选择确定了68个大脑区域中的13个兴趣区域(包括听觉皮层,上部回旋和下额回(IFG)],在刺激编码过程中显示出分类表示(0-260毫秒)。相比之下,有必要15个ROI(包括额叶 - 顶部区域,IFG,运动皮层)来描述以后的分类阶段(后来300-800毫秒),但这些区域与听众的分类听证会的强度高度相关(即意义。行为识别函数的斜率)。我们的数据驱动的多元模型表明,在语音处理的时间过程中,抽象类别出人意料地出现了早期(〜120毫秒),并由相对紧凑的额叶临时 - 直脑脑网络的参与来控制。
背景:帕金森病 (PD) 是一种常见的神经退行性疾病,影响着全世界 700 万至 1000 万人。目前尚无针对 PD 的客观测试,研究表明误诊率高达 34%。机器学习 (ML) 提供了改善诊断的机会;然而,数据集的大小和性质使得很难将 ML 模型的性能推广到实际应用中。目标:本研究旨在巩固前期工作,并引入基于元音发声的诊断特征工程和 ML 新技术。引入了额外的特征和 ML 技术,在大型 mPower 发声数据集上显示出显著的性能改进。方法:我们使用从整个数据集中随机选择的 1600 个 /aa/ 发声样本来推导从数据集中过滤出错误样本的规则。应用这些规则以及联合年龄-性别平衡过滤器,得到一个包含 511 名 PD 患者和 511 名对照者的数据集。我们从 1 秒开始,针对 1.5 秒的音频窗口计算支持向量机的特征。使用 10 倍交叉验证 (CV) 对此进行评估,并分层以平衡每个 CV 倍的患者和对照数量。结果:我们表明,先前文献中使用的特征在推断到更大的 mPower 数据集时表现不佳。由于语音的自然变化,患者和对照的分离并不像以前认为的那么简单。我们在使用其他新特征(确定性为 88.6%,来自贝叶斯相关 t 检验)分离患者和对照方面表现出显着的性能改进,准确率超过 58%。结论:结果令人鼓舞,展示了 ML 在检测神经科医生无法察觉的症状方面的潜力。
帕金森的疾病是一个不寻常的地方神经状况,使您的肌肉组织的特色如何影响您自由运输,清晰地交流并保持最佳姿势,并保持最佳姿势,肌肉紧张,肌肉紧张和胸肌。它是由于神经元灭绝而发生的,该神经元灭绝将大脑内部的多巴胺水平降低为特定的格式。帕金森氏病的体征和症状通常是从身体的一侧(包括手或手掌)的僵硬或震颤开始。患有帕金森氏病的人可能会在以后的生活中患上抑郁症。从1996年到2016年,帕金森氏病的全球流行率从250万人增至610万。(大约是内华达州民众的两倍)。很难区分与旧和早期PD迹象和症状有关的常规认知特征损失。In the US, the general financial effect in 2016 become expected to be $52 billion (approximately $160 in line with character withinside the US) (approximately $160 in line with character in the US) (approximately $160 in line with character withinside the US), together with an oblique value of $14.2 billion (about $44 per person in the US), non-clinical costs of $7.5 billion (about $23 per person in the US), and 48亿美元(在美国每人约15美元)为所有者公众丧失了能力的利润。帕金森氏病的大量人数超过65岁,预计一般的财务负担预计将达到1000亿美元(美国每人约310美元),通过2050年的均值。PD具有五个发育程度,90%的PWP表现出人声麻线受伤的症状和症状。PD患有90%的患者中有90%的患者可能会表现出最早的,通常无症状的症状和症状的症状和症状,即水平(0级)。这为远程医疗的使用范围分析打开了门口。想象一下将经验跳到医生的办公室。患者实际上可能想报告他们的声音,以使用电话的使用,并轻松看家。任务诸如保持未婚元音声音的任务,只要可行或分析通道可能需要监测早期症状和障碍症状。在初步诊断的情况下,医生可以提供治愈的解决方案和深思熟虑的模拟,以振兴多巴胺 - 在大脑中产生神经元,通过
伦敦科学博物馆和英国心脏学会合作的成果。沃勒是一本生理学教科书的作者,1917 年 (6),他发表了一篇关于 2000 个心电图 (ECG) 的论文。具有讽刺意味的是,他之前曾表示,他根本不知道心脏活动的电信号可以用于临床研究。他和埃因托芬一起被提名诺贝尔奖,但在获奖前去世,因此埃因托芬一人获得了诺贝尔奖。沃勒的女儿玛丽是皇家自由医院的物理学教授,她告诉我,托马斯·刘易斯爵士将心电图一词的发明归功于沃勒 (7)。她觉得她的父亲从未得到后人的充分认可。荷兰生理学家埃因托芬于 1887 年成为沃勒的听众,并用利普曼静电计重现了他的发现。他将这些偏转称为 PQRST。这个命名法的起源仍有争议。 A 和 C 是脉搏波,这也许可以解释为什么无法使用 ABCDE。另一种理论认为 PQRST 是五个连续的辅音,那么元音有什么问题呢?笛卡尔甚至因其以 A 开头的直线和以 P 开头的曲线的几何惯例而被牵连(8)。埃因托芬发明了弦电流计,它比静电计更灵敏、更省力,后来一直在使用。一根镀银的石英线悬挂在电磁铁的两极之间。患者的电流根据电流强度移动线。一束光聚焦在这根线上,然后聚焦在缓慢下落的照相底片上,产生心电图轨迹。线做得尽可能细;然后将一端连接到箭头上,然后在实验室中发射。埃因托芬最初的机器重 500 磅,需要五名操作员(9)。随后,商业公司之间就生产更小的适销机器发生了冲突。最后,它落到了英国剑桥仪器公司手中,该公司由伟大的查尔斯·达尔文的儿子贺拉斯·达尔文拥有和经营。几十年后,当我与他们共事时,该公司仍由这个家族经营。他们的前三台机器被赠送给英国心脏病专家,其中最著名的是托马斯·刘易斯。多年来,这些机器几乎没有变化(图 4)。在早期的 House