(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年3月1日发布。 https://doi.org/10.1101/2025.02.25.640071 doi:Biorxiv Preprint
This study investigates Tesla's challenges in convincing people to buy EVs.它使用混合方法(初级和二级研究)来调查和评估特斯拉针对这些挑战的当前策略。最后,它分析了获得的发现,还提供了克服剩余挑战的建议。本研究中的关键发现建议需要进一步发展电池技术,使用新的创新技术,例如车辆到网格(V2G)和现代紧凑型充电器,扩大数量以及在包括高密度领域(包括高密度领域)的更多地点的充电点,提供更多激励和销售计划,并提供更多的激励计划,并提供更多的成本和价格来提高EV的成本和价格更低的产品。
在2020年,WHO制定了首个加速宫颈癌的全球战略,概述了未来十年实现的一套雄心勃勃的目标。同时,新的工具,技术和策略正在管道中,可以改善筛查性能,扩大预防性疫苗的覆盖范围,并防止对致癌HPV的获取,持久性和进展。详细的机理建模可以帮助确定与宫颈癌作斗争的当前和未来策略的组合。需要开源建模工具来转移此类评估的能力。在这里,我们介绍了人类乳头瘤病毒模拟器(HPVSIM),这是一种新的,灵活的基于弹性的模型,可以通过国家特定的重要动态,结构化的性网络,共同传播HPV基因型,B-和T细胞介导的免疫力以及高分辨率疾病自然历史来参数。HPVSIM设计采用用户优先镜头设计:它是在Python中实现的,具有用于模拟常用干预措施的内置工具,包括一组全面的测试和文档,并在笔记本电脑上快速运行(秒至分钟)。没有牺牲有用的复杂性:该平台是灵活的,可以定制场景建模。
Genevieve Marcoux(瑞典隆德大学)AudréeLaroche(加拿大Chu deQuébec)Stephan Hasse(加拿大Chu deQuébec)Marie Bellio(加拿大Chu deQuébec,加拿大)魁北克) Zufferey(Quebec -Quebec-加拿大拉瓦尔大学)TaniaLévesque(加拿大微生物学和免疫学系)Johan Rebetz(瑞典实验室医学)Johan Rebetz(Annie Karakeussian) (加拿大蒙特利尔大学研究中心)Sylvain Bourgoin(加拿大魁北克大学医院中心研究中心)HindHindHindHindHindHindHindhindite Jean Monnet-Universite de Lyon,Fabrice de Lyon,Fabrice Cognasse(Lyon; French of Lyon; French Blass; French Blass; efs)荷兰)约翰·塞姆普尔(瑞典隆德大学)玛丽·乔斯·赫伯特(Marie-JoséeHebert)(加拿大蒙特利尔大学)法国皮雷恩(Paris University Paris是Créteil,Inserm U955加拿大蒙特利尔)Benoit Vingert(法国血液建立)Eric Boilard(Chu de Quebec,加拿大)
◦太阳周期23比太阳周期24更强,更活跃,对太空天气和上层大气的影响更大。◦与温室气体排放相比,太阳可变性对全球表面温度的影响很小。◦太空天气事件对技术和基础设施构成了重大风险,突出了需要改善预测和缓解策略的需求。◦太阳能活动的趋势趋势引发了有关未来太阳周期及其对气候和太空天气的潜在影响的问题。◦持续的研究和监测对于提高我们对太阳可变性及其对地球气候和技术系统的影响的理解至关重要。◦太阳周期23由于其更强的活性,卫星,电网和通信系统造成了更多中断。
电子邮件:murugeshankalai2610@gmail.com摘要高效的交通管理对于确保在高流量城市地区安全安全旅行至关重要。延误是由人口稠密的地区的拥塞造成的,其流动性高和商业人口会直接或间接影响公众的日常生活。该项目着重于实施动态信号控制系统,该系统利用AI驱动的技术根据实时交通密度调整流量信号正时。使用基于YOLO的对象检测和MOG2移动对象检测算法,该系统从CCTV摄像机处理视频供稿来计算车辆密度并动态优化信号流动。通过计算信号处的密度,可以在优化的时间使用时清除拥塞。该系统减轻延误,尤其是在高峰时段,可确保不需要手动干预的情况下更顺畅的城市运输。关键字:动态流量信号控制,对象检测算法 - Yolo(您只看一次),Mog2(高斯的混合物)
ARS-COV-2是冠状病毒疾病2019(COVID-19)大流行的病因学药。SARS-COV-2是在2002 - 2003年SARS-COV-1之后的第21世纪越过物种障碍的第三个高度致病性冠状病毒(参考文献。1 - 3)和2012年的MERS-COV(参考4)。已知另外四个HCOV(HCOV-229E,HCOV-NL63,HCOV-OC43和HCOV-HKU1)在人类的季节性循环中循环,大约有三分之一的常见冷感染感染5。像SARS-COV-1和HCOV-NL63一样,SARS-COV-2进入靶细胞的进入是由血管紧张素转化酶2(ACE2)受体6-10介导的。SARS-COV-1和SARS-COV-2使用细胞丝氨酸蛋白酶跨膜蛋白酶丝氨酸2(TMPRSS2)用于质膜6,11的尖峰蛋白启动。组织蛋白酶还参与SARS-COV峰蛋白裂解和融合肽暴露于进入时(参考文献。12 - 15)。已经报道了几个用于鉴定冠状病毒调节剂的全基因组KO CRISPR屏幕16 - 21。这些屏幕使用肾脏起源的自然允许的Simian Vero E6细胞20;肝脏起源的人类HuH7细胞(或衍生物)(非定位表达ACE2和TMPRSS2)16、18、19;和A549肺部的细胞,异位表达ACE2 17,21。在这里,我们进行了全基因组,功能丧失的CRISPR KO屏幕和功能获得的CRISPRA屏幕,包括生理学上
日益增长的环境问题以及对更具成本效益和奢华生活方式的渴望,导致许多人的生活方式发生了重大转变,尤其是在尼日利亚阿布贾、拉各斯等城市中心以及许多发展中国家。这些国家面临的经济挑战加剧了这种转变,其中包括燃料成本上涨,这严重影响了交通运输业(Okwelle、Beako 和 Ajie,2017 年)。不断上涨的燃料成本促使包括尼日利亚在内的许多国家探索更可持续、更清洁的交通方式,而电动汽车 (EV) 则成为减少车辆排放和向更清洁能源过渡的关键解决方案(Idris 和 Francis,2019 年)。电动汽车依靠一个或多个电动机驱动,由于其具有缓解气候变化和减少对化石燃料依赖的潜力,正被全球公认为汽车行业的未来(Alanazi,2023 年;Bawa 和 Nwahu,2023 年)。电动汽车的普及被视为实现环境可持续性的关键一步,电动汽车技术的最新进步带来了诸多好处,包括改善生活质量、经济优势和显著的环境效益 (Chimaotuodi, 2023; Rady, Darwish & Abbod, 2023)。
自动化的导向车辆(AGV)在各个研究领域都起着至关重要的作用。我们的项目旨在增强人类的视觉系统并开发智能机器。AGV广泛用于工业领域,社区服务和危险工作环境中。他们在我们的日常生活中具有许多优势,使他们能够像机器人一样感知和对环境做出反应。考虑到它们的广泛使用,我们开发了一个AGV的原型,该原型使用两个DC电动机和一个freewheel遵循平坦表面上的预定路径。相机连接到PC,以通过MATLAB进行图像采集和处理。GUI应用程序允许用户确定路径,而RF模块可以在PC和MicroController之间进行通信。我们可以根据车辆的位置从PC发送命令,然后按照指示向前,向左,右或停止。这项研究旨在利用医疗保健部门的机器人技术来增强残疾人的流动性。该项目涉及开发一个机器人系统,该机器人系统可以跟踪和导航各种环境,包括工业领域,仓库,医疗设施以及人类无法运作的地区。所提出的系统由三个主要组件组成:机器人组件,PC和GUI应用。机器人组件包括Atmega 16A微控制器,电机驱动器电路(L293D),RF模块(CC2500),IR传感器和USB摄像头。PC将从GUI应用程序接收命令,并通过RF模块向机器人组件发送信号。基于IR的传感器用于障碍物检测。系统的功能框图说明了摄像机如何使用阈值捕获车辆路径的鸟眼视图图像,并使用阈值检测车辆上的红色条并跟踪其运动。GUI应用程序允许用户追踪路径,而微控制器识别PC中的命令并控制机器人的运动(向前,左或右)。电路图显示了两个主要部分:机器人组件和PC。机器人组件采用带电机驱动器电路的Atmega 16A微控制器,用于隔离高功率电动机。RF模块CC2500使用串行协议操作,并连接到微控制器的TX和RX引脚。该系统的算法涉及初始化微控制器,USART和电机;从USB摄像头获取图像;处理图像;跟踪位置;向机器人组件发送信号;并在各自的方向上移动机器人。原型实施证明了在各个领域中使用AGV的可行性,包括工业环境,仓库,医疗设施和人类无法运作的危险区域。参考:1。R.C. Arkin和R.R. Murphy,“制造环境中的自动导航”,IEEE Int。 conf。 机器人和自动化,1997年,pp。 2312-2317。 2。 K. Schilling,M。Mellado-Arteche,J。Garbajosa和R. Mayerhofer,“用于工业生产的灵活自动运输机器人的设计”,《 Proc》。 ieee int。 sammp。 工业电子(ISIE'97),第1卷。R.C.Arkin和R.R.Murphy,“制造环境中的自动导航”,IEEE Int。conf。机器人和自动化,1997年,pp。2312-2317。2。K. Schilling,M。Mellado-Arteche,J。Garbajosa和R. Mayerhofer,“用于工业生产的灵活自动运输机器人的设计”,《 Proc》。ieee int。sammp。工业电子(ISIE'97),第1卷。在1997年,纽约纽约发行了一份出版物,涉及从第791页到796。一份题为“自动导向车辆的同时调度和无冲突路线的动态优化”的研究论文发表在2010年的高级机械设计,系统和制造杂志上。另一项研究是“自动制造系统的过程与以资源为导向的Petri净建模”,由N. Wu和M. Zhou进行,出现在2010年5月的《亚洲控制杂志》中。本文讨论了与AGV词典中与AGV相关的框图。