今年初以来,发达经济体债券收益率上升,其背后是全球经济复苏前景向好。全球经济增长强劲将通过更强劲的出口需求支撑新兴市场经济体 (EME) 的产出。然而,发达经济体收益率上升可能会导致新兴市场经济体的金融状况趋紧,而这些经济体的经济基本面可能在一段时间内需要大量的货币和财政支持。尤其是,与发达经济体相比,许多新兴市场经济体面临漫长的复苏期,而由于新冠病例数高企且不断上升,以及疫苗接种速度相对较慢,复苏期将进一步推迟。例如,许多新兴市场经济体的人均 GDP 预计几年内都不会恢复到疫情前的水平,远远落后于美国和中国(图 A.1)。
1 Jordan,DC,Marion,B,Deline,C,Barnes,T,Bolinger,M。PV Fiff Fifferd可靠性状态 - 100 000太阳系的分析。Prog Photovolt Res Appl。2020; 28:739–754
6,Kwan Ho Tang 2,3,Jason Moffat 8,Beattrix Ueberheide 5,6,Alireza Khodadadadadadi-Jamayran 4,Aristotelis tsirigos 3,4,7,Benjamin G. Neel G. Neel G. Neel 1,2,2,2,2,3* 1医学生物物理学系2加拿大安大略省多伦多大学健康网络玛格丽特癌症中心公主。3纽约大学纽约大学兰蒙医学中心的纽约大学纽约大学纽约大学纽约大学纽约大学医学院的劳拉和艾萨克·佩尔莫特癌症中心。4应用生物信息学实验室,科学与研究办公室,纽约大学医学院,纽约,纽约,美国。5蛋白质组学实验室,纽约州纽约州纽约州健康高级研究与技术部。 6纽约州纽约州纽约州纽约州健康健康生物化学和分子药理学系。 7纽约大学医学院病理学系,美国纽约,美国。 8唐纳利中心,加拿大安大略省多伦多大学多伦多大学。 *通讯作者和现在的地址:Benjamin G. Neel,纽约大学Grossman医学院,522 First Avenue,Smilow Building,Smilow Building 12楼1201,纽约,纽约,纽约,10016。 电话:212-263-3019;传真:212-263-9190;电子邮件:benjamin.neel@nyulangone.org跑步标题(60个字符):lapatinib耐药的表征。 关键字:HER2阳性乳腺癌,酪氨酸激酶抑制剂(TKI),抗性,休眠,静止,癌症,癌干细胞,丝氨酸/苏氨酸 - 蛋白蛋白激酶3(SGK3)竞争兴趣:B.G.N. 是一个联合创始人,拥有股权,并获得Navire Pharmaceuticals和Northern Biologics,Inc。的咨询费用。5蛋白质组学实验室,纽约州纽约州纽约州健康高级研究与技术部。6纽约州纽约州纽约州纽约州健康健康生物化学和分子药理学系。 7纽约大学医学院病理学系,美国纽约,美国。 8唐纳利中心,加拿大安大略省多伦多大学多伦多大学。 *通讯作者和现在的地址:Benjamin G. Neel,纽约大学Grossman医学院,522 First Avenue,Smilow Building,Smilow Building 12楼1201,纽约,纽约,纽约,10016。 电话:212-263-3019;传真:212-263-9190;电子邮件:benjamin.neel@nyulangone.org跑步标题(60个字符):lapatinib耐药的表征。 关键字:HER2阳性乳腺癌,酪氨酸激酶抑制剂(TKI),抗性,休眠,静止,癌症,癌干细胞,丝氨酸/苏氨酸 - 蛋白蛋白激酶3(SGK3)竞争兴趣:B.G.N. 是一个联合创始人,拥有股权,并获得Navire Pharmaceuticals和Northern Biologics,Inc。的咨询费用。6纽约州纽约州纽约州纽约州健康健康生物化学和分子药理学系。7纽约大学医学院病理学系,美国纽约,美国。 8唐纳利中心,加拿大安大略省多伦多大学多伦多大学。 *通讯作者和现在的地址:Benjamin G. Neel,纽约大学Grossman医学院,522 First Avenue,Smilow Building,Smilow Building 12楼1201,纽约,纽约,纽约,10016。 电话:212-263-3019;传真:212-263-9190;电子邮件:benjamin.neel@nyulangone.org跑步标题(60个字符):lapatinib耐药的表征。 关键字:HER2阳性乳腺癌,酪氨酸激酶抑制剂(TKI),抗性,休眠,静止,癌症,癌干细胞,丝氨酸/苏氨酸 - 蛋白蛋白激酶3(SGK3)竞争兴趣:B.G.N. 是一个联合创始人,拥有股权,并获得Navire Pharmaceuticals和Northern Biologics,Inc。的咨询费用。7纽约大学医学院病理学系,美国纽约,美国。8唐纳利中心,加拿大安大略省多伦多大学多伦多大学。*通讯作者和现在的地址:Benjamin G. Neel,纽约大学Grossman医学院,522 First Avenue,Smilow Building,Smilow Building 12楼1201,纽约,纽约,纽约,10016。电话:212-263-3019;传真:212-263-9190;电子邮件:benjamin.neel@nyulangone.org跑步标题(60个字符):lapatinib耐药的表征。关键字:HER2阳性乳腺癌,酪氨酸激酶抑制剂(TKI),抗性,休眠,静止,癌症,癌干细胞,丝氨酸/苏氨酸 - 蛋白蛋白激酶3(SGK3)竞争兴趣:B.G.N.是一个联合创始人,拥有股权,并获得Navire Pharmaceuticals和Northern Biologics,Inc。的咨询费用。他是科学顾问委员会的成员,并获得了Avrinas,Inc的咨询费和股权,并且是美国联邦法院的Johnson和Johnson卵巢癌症诉讼的专家证人。他的配偶拥有或持有Amgen,Inc。,Regeneron,Moderna,Inc。,Gilead Sciences,Inc。和Arvinas,Inc。J.M.是北部生物制剂和先锋免疫治疗学的股东,并且是Century Therapeutics和Aelian Biotechnology的顾问和股东。
摘要:前列腺癌(PCA)经常变得耐药,对有效的管理提出了重要的挑战。尽管对雄激素剥夺治疗的初始治疗可以控制晚期PCA,但随后的耐药机制允许肿瘤细胞继续生长,需要采取替代方法。这项研究深入研究了不同PCA亚型的特定代谢依赖性,并探讨了结合雄激素受体(AR)抑制(ARN具有线粒体复合物I抑制(IACS))的潜在协同作用。我们检查了正常前列腺上皮细胞(PNT1A),雄激素敏感细胞(LNCAP和C4-2)的代谢行为以及与雄激素独立的细胞(PC-3)使用ARN,IACS或组合时。结果发现了跨PCA亚型的不同线粒体活性,雄激素依赖性细胞表现出增强的氧化磷酸化(OXPHOS)。在多个PCA细胞系中,ARN和IACS辅助细胞增殖的结合。细胞生物能分析表明,IACS减少了OXPHOS,而ARN阻碍了某些PCA细胞中的糖酵解。另外,送乳糖补充破坏了代谢重编程引起的补偿性糖酵解机制。值得注意的是,葡萄糖抑制条件提高了PCA细胞对线粒体抑制的敏感性,尤其是在抗性PC-3细胞中。总体而言,这项研究阐明了PCA中AR信号传导,代谢适应性和治疗耐药性之间的复杂相互作用。这些发现提供了对亚型特异性代谢纤维文件的有价值的见解,并提出了一种有前途的策略,通过利用其代谢脆弱性来靶向PCA细胞。
2,3,4学生,网络安全系,Paavai工程学院,Namakkal Abstract Cloud Computing对虚拟化的依赖引入了安全风险,尤其是侧道通道攻击,这些攻击利用共享资源来推断敏感数据。这些攻击利用CPU缓存,内存访问模式,时机变化和功耗来从共同定位的虚拟机(VMS)中提取机密信息。本文在虚拟化的云环境中分类了新兴的侧道渠道威胁,分析攻击向量,例如基于缓存的基于内存,基于内存,功率分析,时机和基于网络的侧向通道攻击。它还评估了现有的对策,包括基于硬件的隔离,软件防御和管理程序级别的安全性增强功能。此外,本文探讨了跨VM侧向通道攻击的现实案例研究,并提出了未来的缓解策略,例如AI驱动的异常检测,量子弹性加密和安全的硬件创新。解决这些漏洞对于确保数据机密性和对多租户云基础架构的信任至关重要。加强针对侧通道攻击的防御能力将在云计算的未来安全性中起关键作用。关键字:云安全性,侧渠道攻击,管理程序安全性,多租户云环境简介云计算通过提供可扩展,成本效益和需求计算资源来改变现代IT基础架构。各个行业的组织越来越依赖云服务来存储,处理和管理敏感数据。在云计算的核心上是虚拟化,它使多个虚拟机(VM)能够通过管理程序在共享的物理硬件上操作。虚拟化增强了资源利用率和运营效率,但它也引入了安全风险,尤其是侧通道攻击。侧通道攻击通过共享硬件资源而不是利用软件漏洞来利用间接信息泄漏。在多租户云环境中,攻击者可以通过分析缓存访问模式,内存交互,时机变化,功耗或网络流量来提取敏感数据。与通常需要直接访问目标系统的常规攻击不同,侧渠道攻击使对手可以从共同居民VM中推断机密信息,而不会违反传统的安全机制。日益增长的基础设施 - AS-A-Service(IAAS)和平台为AS-AS-Service(PAAS)模型增加了侧向通道攻击的风险,因为不同的租户经常共享相同的物理
摘要 - 基于变压器的模型主导了NLP和视觉应用,其基本机制却尚不清楚为标签空间映射到标签空间的基本机制。在本文中,我们研究了视觉变压器(VIT)的已知表示形式漏洞的来源,其中感知相同的图像可以具有非常不同的表示,而语义上无关的图像可以具有相同的表示形式。我们的分析表明,对输入的不可感知的变化可能会导致显着的表示变化,尤其是在以后的层中,这表明VIT的性能中的潜在不稳定性。我们的全面研究表明,在早期层中微妙的较微妙的效果通过网络传播和放大,在中间到晚层中变得最明显。这种洞察力激发了神经维特 - 武器的发展,这是一种新型的防御机制,在战略上使早期层中脆弱的神经元中和脆弱的神经元,以防止一系列对抗性效应。我们在各种攻击中展示了神经果赛的有效性,尤其是在强烈的迭代攻击中出色,并展示了其非凡的零弹性概括能力。在没有微调的情况下,我们的方法在对抗性示例中实现了77.8%的效率精度,超过了常规的鲁棒性方法。我们的结果为对抗性效应如何通过VIT层传播,同时提供了一种有希望的方法来增强视觉变压器对对抗性攻击的鲁棒性。此外,它们还提供了一种有希望的方法来增强视力变压器对对抗攻击的鲁棒性。索引术语 - 代表脆弱性,对抗性攻击,视觉变压器,可靠的嵌入
摘要 — 图形处理单元 (GPU) 越来越多地被应用于可靠性至关重要的多个领域,例如自动驾驶汽车和自主系统。不幸的是,GPU 设备已被证明具有很高的错误率,而实时安全关键应用程序所施加的限制使得传统的(且昂贵的)基于复制的强化解决方案不足。这项工作提出了一种有效的方法来识别 GPU 模块中的架构易受攻击的位置,即如果损坏则最影响正确指令执行的位置。我们首先通过基于寄存器传输级 (RTL) 故障注入实验的创新方法来识别 GPU 模型的架构漏洞。然后,我们通过对已确定为关键的触发器应用选择性强化来减轻故障影响。我们评估了三种强化策略:三重模块冗余 (TMR)、针对 SET 的三重模块冗余 (∆ TMR) 和双联锁存储单元(骰子触发器)。在考虑功能单元、流水线寄存器和 Warp 调度器控制器的公开 GPU 模型 (FlexGripPlus) 上收集的结果表明,我们的方法可以容忍流水线寄存器中 85% 到 99% 的故障、功能单元中 50% 到 100% 的故障以及 Warp 调度器中高达 10% 的故障,同时降低硬件开销(与传统 TMR 相比,在 58% 到 94% 的范围内)。最后,我们调整了该方法以针对永久性故障执行补充评估,并确定了容易在 GPU 上传播故障影响的关键位置。我们发现,对瞬态故障至关重要的触发器中相当一部分(65% 到 98%)对永久性故障也至关重要。
摘要 - 结合了LiDAR和相机等备用器的多数传感器融合(MSF),它引起了人们的关注,以此作为对Lidar Spoofiff的对策,威胁着自动驾驶系统的安全性。但是,当前无国界医生实施的有效性尚未在实际的自主驾驶系统中彻底列出。在这项研究中,我们提出了一个初始框架,旨在基于开源自动驾驶软件AutoWare Universe和Awsim Simulator探索MSF的潜在漏洞。通过使用此框架进行的实验,我们证明了自动保健宇宙中的MSF实现也可能导致整个系统的危险状态,即使摄像机丢失了镜头点云,摄像机可以正确检测对象。此漏洞之所以出现,是因为相机信息仅限于点云聚集中的补充作用。我们的发现表明,自动保健宇宙中的MSF实施缺乏针对LiDAR SPOOFIFG FIFG攻击的能力,由于其结构上的限制。该框架可在以下网址获得:https:// gi thub.com/keio-csg/multi-sensor-defense-analysis-platform。
金融系统中与气候相关的漏洞在气候冲击触发时可能通过各种传输渠道和放大机制威胁金融稳定。分析与气候相关的漏洞包括通过气候冲击如何触发FSB财务稳定性监视框架中阐明的传统漏洞的追踪。这可能比非气候冲击更为复杂,因为它们的时间和幅度不确定性,临界点的非线性以及二阶和溢出效应。FSB的工作着重于评估全球金融体系中与气候相关的漏洞,特别是从跨境和跨部门的角度来看。它构成了FSB 2021路线图的一部分,以协调标准设定和其他国际机构的工作,以应对气候变化的财务风险。
Internet的安全性和许多其他应用程序都取决于少数开源加密库:其中任何一个中的一种易用性都可能损害很大一部分的网络流量。尽管有可能产生安全影响,但尚不清楚加密软件中漏洞的特征和原因。在这项工作中,我们对加密文库及其产生的脆弱性进行了第一个系统的纵向分析。我们从国家漏洞数据库,单个项目存储库和邮件列表以及所有广泛使用的加密库中的其他相关资源中收集数据。在调查这些漏洞的原因时,我们发现了这些图书馆的复杂性及其安全性之间存在相关性的证据,从经验上证明了肿胀的加密代码库的潜在风险。我们最有趣的发现是,在C和C ++中编写的库中有48.4%的漏洞主要是由内存安全问题引起或加剧的,这表明系统级的错误是这些系统安全问题的主要协助者。加密设计和实施问题占所有图书馆漏洞的27.5%,侧通道攻击另外提供了19.4%。我们发现核心库组件之间的复杂性水平和脆弱性的实质性差异:例如,超过三分之一的漏洞位于SSL/TLS协议的实施中,为这些库中的Codebase质量和安全性改进提供了可行的证据。