摘要:电弧增材制造 (WAAM) 是一种基于气体保护金属电弧焊的增材制造工艺。它允许通过控制焊珠的沉积和堆叠来制造大体积金属部件。除了近净成形的金属部件制造外,WAAM 还应用于结构部件(例如壳体几何形状)的局部加固。然而,此过程可能会导致不希望的热诱导变形。在这项工作中,通过实验和瞬态热机械有限元模拟研究了半圆柱壳体几何形状的 WAAM 加固引起的变形。在实验中,将焊珠施加到样品上,同时使用热电偶测量其热历史。使用位移传感器记录正在发生的变形。实验数据用于校准和验证模拟。使用经过验证的模型,可以预测样品的温度场和变形。随后,使用模拟来评估不同的沉积模式和壳体厚度与由此产生的部件变形之间的关系。调查显示,壳体厚度与变形之间存在非线性关系。此外,焊道的方向和顺序对变形的形成有显著影响。然而,这些影响随着壳体厚度的增加而减弱。
这项研究研究了粉状包装铝化处理对在1000°C的等温氧化过程中通过电弧添加剂制造(WAAM)制造的ER307不锈钢组件的高温氧化的影响,持续5 h,25 h,25小时和50 h。扫描电子显微镜(SEM),能量分散型Troscopicy(EDS),X射线衍射(XRD),X射线荧光(XRF),纳米识别测试和氧化测试用于表征WAAM生产的铝制和非铝样品。结果表明,粉状包装铝化使表面纳米硬度提高到13.95 GPA,弹性模量最高为159 GPA,并改善了WAAM ER307不锈钢的微观结构。的确,铝制涂层保持稳定,直至超过1000℃的温度,而赤铁矿的生长受到优先氧化铝生长(Al 2 O 3)的抑制,从而抑制了46 - 70%的氧化耐药性。此外,由于低温铝化的优势,这些合金的微观结构,机械性能和氧化耐药性得到了改善,而不会引起Sigma相,这构成了不含量不锈钢的高温热处理中的一个重大问题。
在市场上,我们邀请了比利时焊接研究所,该研究所支持想要采取措施迈向WAAM金属添加剂制造的公司;从机械/腐蚀测试,首次可行性研究,并使工业公司导致将技术整合到您的生产环境中。Wim Verlinde是该主题的专家,他告诉我们该研究所及其项目合作伙伴Ku Leuven和Vives已经与WA AM软件合作,例如MX3D,Sprutcam,Oqton,Powermill(Autodesk),或MX3D,Sualtioned,Ounceeding,Oqton,Oqton,In In In In Waam污染的项目。他们目前正在参与一些标准化项目,这些项目可能使该行业更好地采用该技术,并帮助设计师在物质表征方面更容易做出决策。
在本研究中,使用4043 MIG填充线(WAAM)制造了300 x 200 x 20 mm 3的矩形平板300 x 200 x 20 mm 3。研究了焊接电流(热输入)对4043 WAAM合金的焊缝微结构和机械性能的影响。通过将焊接电流从140到160 a改变,以使其他焊接参数从140 a变化为恒定值。实验发现表明,所有焊接接头都是无缺陷的,并且焊接的强度降低了焊接电流的增加。在较低的热输入(140a)焊接接头的情况下,达到了120 MPa的最高关节强度(占基本WAAM强度的119%)。显着的强度是由于存在更精致的e术树突微观结构和融合边界尺寸较小的原因。焊接接头的韧性分别为低,中和高热量输入的10、11和12焦耳。焊接接头的韧性显示出焊接电流增加的趋势增加。更多的焊接接头软化导致了更高的延展性和韧性。蚀腐蚀研究的结果表明,由于Al基质中存在更多的Si,总体而言,在所有焊接接头中都实现了更好和类似的腐蚀行为。焊接微结构中的热输入和谷物变高的差异归因于焊接接头腐蚀性的变化。但是,焊接接头的耐腐蚀性在行业标准的可接受极限之内。
图3 WAAM系统。(1)IRB 2600; (2)旋转协同5000 CMT焊机; (3)VR 7000 CMT电线馈线; (4)CMT火炬; (5)CCD相机; (6)3D配置文件扫描仪; (7)红外温度传感器; (8)2-DOF工件
在金属增材制造技术中,涉及金属沉积的技术,包括激光熔覆/直接能量沉积(DED,带粉末送料)或线材和电弧增材制造(WAAM,带线材送料),具有几个吸引人的特点。例如,可以提到高质量效率(LMD 为 50-80%,WAAM 为 100%)、大构建速率(超过 100 cm 3 / h)、具有有限孔隙度的良好微观结构以及构建梯度或多材料的能力。尽管相应的工艺已经开发了相当长一段时间,但对各种主题的研究工作仍然有很大的需求,例如新型或梯度材料的沉积、后处理和沉积材料的磨损行为。当前的特刊包括六篇文章,旨在介绍针对所有这些方面的最新原创研究,重点关注涂层而不是 3D 结构。
在金属增材制造技术中,涉及金属沉积的技术,包括激光熔覆/直接能量沉积(DED,带粉末送料)或线材和电弧增材制造(WAAM,带线材送料),具有几个吸引人的特点。例如,可以提到高质量效率(LMD 为 50-80%,WAAM 为 100%)、大构建速率(超过 100 cm 3 / h)、具有有限孔隙度的良好微观结构以及构建梯度或多材料的能力。尽管相应的工艺已经开发了相当长一段时间,但对各种主题的研究工作仍然有很大的需求,例如新型或梯度材料的沉积、后处理和沉积材料的磨损行为。当前的特刊包括六篇文章,旨在介绍针对所有这些方面的最新原创研究,重点关注涂层而不是 3D 结构。
Wire-Arc添加剂制造(WAAM)是一种定向 - 能源沉积技术,它使用电弧焊接程序生产计算机辅助设计的零件,例如三维印刷金属组件。添加剂制造的挑战是各向异性。间质元素在不同等级的TI6AL4V的机械性能中起重要作用。在这项研究中,比较了该应用的5级和23级Ti6al4v的机械性能。在不同方向(水平和垂直)和不同位置(顶部和底部)的WAAM生产的TI6AL4V壁上提取样品。样品进行光学显微镜和拉伸和硬度测试。5级TI6AL4V样品的强度更大,硬度更大,延展性较低,这是由于间质元素含量较高的23级。底部样品的强度高于顶部样品,这归因于制造过程中的热循环,从而产生不同的微观结构。
增材制造 (AM) 是一种通过一层一层地不断添加材料来创建组件的工艺。与传统的“减材”加工工艺相比,“增材”制造有几个好处,包括减少材料浪费、通过减少生产步骤来轻松生产复杂零件以及减少制造前置时间。本文展示了使用金属惰性气体 (MIG) 焊接的电弧增材制造 (WAAM) 工艺,以分析其在海事领域的潜在应用。本报告展示了焊接板的弯曲屈服强度如何随着不同数量的金属添加剂增强而变化。进行了标准三点弯曲试验,以确定弯曲屈服强度的差异并观察材料行为。最后,本文讨论了 WAAM 等 AM 工艺仍在开发中,但它们在海事行业的潜力是显而易见的,尤其是可以为我们的海外作战人员提供补给。