摘要:为实现更薄的微电子封装,生产所需厚度的新型半导体硅片不仅需要高成本和能源,而且还会造成环境污染问题。然而,这一问题可以通过使用一步化学蚀刻来生产所需厚度的硅芯片以进行适当的封装,从而简单地解决。在本研究中,使用各向同性的湿化学蚀刻法,通过改变HF蚀刻剂浓度来研究蚀刻时间对HF/HNO 3 /CH 3 COOH混合溶液中的Si晶片的影响。研究的蚀刻时间为5分钟至30分钟,HF蚀刻剂浓度在(20-24)wt%范围内。从结果可以看出,随着蚀刻时间的延长,重量损失和蚀刻深度的变化单调增加。然后根据重量损失和蚀刻深度随时间的变化来确定蚀刻速率。结果表明,Si晶片的蚀刻速率随时间降低,在较高的HF浓度下增大。在光学显微镜下观察到蚀刻后Si晶片的表面变得光滑抛光。 X 射线衍射图表明,蚀刻硅的晶体峰强度高于纯硅,随着 HF 浓度的增加,与 Si 相关的峰略微向 2θ 方向移动。目前的发现表明,化学蚀刻硅晶片的所需厚度可以潜在地装入微电子设备制造的更薄的封装中,从而减少能源和成本浪费,实现未来的可持续发展。
市场新闻 6 功率半导体器件需求上升,推动宽带隙市场发展 微电子新闻 8 Fraunhofer IAF 报告创纪录的 640GHz InGaAs MOSHEMT 晶体管 •富士通荣获 IEEE HEMT 里程碑奖 •Qorvo 融资 2 亿美元 宽带隙电子新闻 14 SiCrystal 将向 ST 供应价值 1.2 亿美元的 150 毫米 SiC 晶圆 •II–VI 签署协议,供应价值 1 亿美元的 SiC 基板 •住友开始生产 150 毫米 GaN-on-SiC •GaN Systems 从 SPARX 获得资金 •IVWorks 融资 670 万美元 •GaN 电源充电器在 CES 上展出 •JST 的 NexTEP 计划生产基于 THVPE 的块状 GaN 生长设备 材料和加工设备新闻 33 Shin-Etsu 获得 Qromis 的 GaN 基板技术许可 •Aixtron 获得 PlayNitride 的 μ LED 生产资格 •BluGlass 和 Luminus合作评估 RPCVD 隧道结级联 LED LED 新闻 42 Plessey 在硅上开发原生红色 InGaN LED,用于 μ LED 显示屏 • TowerJazz 与 Aledia 合作开发纳米线 LED 工艺 • MICLEDI 从 imec.xpand、PMV、FIDIMEC 融资 450 万欧元 • Nakamura 将获得 NAS 奖 光电子新闻 43 TDK 投资 SLD Laser • ON Semi 与 SOS LAB 合作开发 LiDAR • Ambarella、Lumentum 与 ON Semi 合作开发 3D 感应 光通信新闻 51 II–VI 在 150mm GaAs 上推出高速数据通信 VCSEL,用于消费电子产品中的光纤 HDMI 电缆 PV 新闻 58 晶科能源与上海空间电源研究所合作
摘要:放线菌伴生细胞致死性膨胀毒素 (Cdt) 可诱导淋巴细胞发生细胞周期停滞和凋亡;毒性取决于活性 Cdt 亚基 CdtB。我们现在证明,p21 CIP1 / WAF1 对 Cdt 诱导的细胞凋亡至关重要。Cdt 可诱导淋巴细胞系 Jurkat 和 MyLa 以及原代人类淋巴细胞中 p21 CIP1 / WAF1 水平升高。这些增加取决于 CdtB 作为磷脂酰肌醇 (PI) 3,4,5-三磷酸 (PIP3) 磷酸酶发挥作用的能力。值得注意的是,Cdt 诱导的 p21 CIP1 / WAF1 水平升高伴随着磷酸化 p21 CIP1 / WAF1 水平的显著下降。通过双管齐下的方法来防止这些变化,评估了 Cdt 诱导的 p21 CIP1 / WAF1 增加的重要性;与新型 p21 CIP1 / WAF1 抑制剂 UC2288 预孵育,并使用成簇的规律间隔短回文重复序列 (CRISPR) / cas9 基因编辑开发 p21 CIP1 / WAF1 缺陷细胞系 (Jurkat p21 − )。UC2288 阻断了毒素诱导的 p21 CIP1 / WAF1 增加,用这种抑制剂处理的 Jurkat WT 细胞对 Cdt 诱导的细胞凋亡的敏感性降低。同样,Jurkat p21 − 细胞未能发生毒素诱导的细胞凋亡。通过证明 Cdt 诱导的促凋亡蛋白 Bid、Bax 和 Bak 水平的增加依赖于 p21 CIP1 / WAF1,进一步证实了 Cdt、p21 CIP1 / WAF1 和细胞凋亡之间的联系,因为这些变化在 Jurkat p21 − 细胞中没有观察到。最后,我们确定 p21 CIP1 / WAF1 的增加依赖于毒素诱导的伴侣热休克蛋白 (HSP) 90 水平和活性的增加。我们提出 p21 CIP1 / WAF1 在介导 Cdt 诱导的毒性中起着关键的促凋亡作用。
抽象的高级包装技术继续使半导体行业能够满足移动设备和其他高性能应用所需的较薄,更小,更快的组件的需求。但是,由摩尔定律驱动的芯片I/O计数的增加以及低于10nm的FinFET的能力对现有的高级包装过程提出了许多其他挑战。与摩尔定律不同,该法律预测密集综合电路中的晶体管数量大约每两年两倍,高级包装正在经历另一种“法律”;在晶体管的数量增加的情况下,它的功能数量增加,在最终产品的最终量限制下驱动技术路线图的数量不断减少。不可避免地,随着功能的增加,过程的复杂性和成本也随之增加。在这个非常敏感的高级包装舞台上,外包半导体组件和测试供应商(OSAT)需要通过降低其制造成本来补偿。这要求OSAT降低材料成本,增加吞吐量,产量并寻找减少过程步骤数量的新方法。OSAT降低材料成本的方式之一是从后端处理中除去硅晶片。使用环氧霉菌化合物(EMC)创建重构的晶片,或使用玻璃载体。在玻璃载体的情况下,通常情况下,骰子面朝下固定在载体上,然后进行处理,即使使用红外(IR)成像,也可以防止从复合堆栈的顶部看到前侧图案。在这种特殊情况下,在对齐标记上的光孔器中定义了一个其他光刻的“清除”窗口,因此可以将不透明的膜从对齐标记处蚀刻出来,距离剥去的距离,并重新设计了光刻层。这种额外的处理显然是昂贵且耗时的。本文特别关注基于步进的光刻解决方案的概念,方法和性能,该解决方案利用光孔潜在图像为光刻过程提供了临时的对齐标记,从而消除了对附加图案和蚀刻步骤的需求。这个革命性系统采用了背面摄像头,可以对齐在载体中死亡。一个单独的曝光单元,校准了对齐摄像头中心,曝光了临时潜在图像目标,然后在正常的步进光刻操作过程中由系统的常规比对系统检测到该目标。详细讨论了对齐,覆盖和潜在图像深度控制的性能数据。最终分析证明,<2µm的覆盖层很容易实现,对系统吞吐量没有影响。关键词:高级包装,3D IC,TSV,背面对齐,步进,面板,粘合晶片对齐,通过硅Via,UBM对齐,潜在图像。