连接世界的硅集成电路制造半导体芯片在概念上很简单。硅是基本的半导体,你必须在不同区域改变它地电气特性才能制造二极管、电阻器和晶体管。通过定义想要改变的地方,然后只改变这个区域,然后定义想要改变的另一个区域并进行改变,依此类推。这可以重复十到二十次。定义过程称为“掩蔽”,硅改变过程称为“扩散”。所有这些都是在晶圆制造区完成的,1971 年的晶圆是一个圆形、薄的 3 英寸硅盘。在晶圆制造区,你会穿着特殊的衣服来保护晶圆不被你伤害,而不是你被晶圆伤害。必须将污染水平保持在非常低的水平才能使电路正常工作。
Entegris ® 、Entegris Rings Design ® 和其他产品名称是 Entegris, Inc. 的商标,如 entegris.com/trademarks 所列。所有第三方产品名称、徽标和公司名称均为其各自所有者的商标或注册商标。使用它们并不表示商标所有者与它们有任何关联、赞助或认可。
– 将引线框架的接触点移动到无限平面 – 将引线框架与细间距 pogo 技术相结合 – 减少引线框架特征以匹配凸块间距 – 减少引线框架力以限制晶圆凸块上的接触标记 – 限制擦洗以确保无球剪切
Peng, L. (2012)。用于集成电路 3-D 堆叠的晶圆级细间距 Cu-Cu 键合。博士论文,南洋理工大学,新加坡。
由于其优异的介电性能,玻璃可以作为表面离子阱制造中石英或蓝宝石的低成本替代材料。与高电阻率(5000 Ω·cm)硅衬底(20 MHz 时的典型损耗角正切为 1.5)相比[24],本文采用的玻璃衬底(Corning SGW 8.5)在 5 GHz 时的损耗角正切为 0.025,体积电阻率为 10 10 Ω·cm(数据可从产品信息表获得)。这省去了硅阱所需的射频屏蔽层和绝缘层,并使制造程序变得更加简单。此外,透明玻璃(波长为 300 至 2400 nm 的透射率为 90%)可以使光的传输和收集更加灵活,例如,通过在下面放置光纤和/或光电探测器。 [25]与其他介电材料(如蓝宝石和石英)相比,玻璃不仅成本低,而且可制造性更先进,可以实现高可靠性的玻璃通孔、[26,27]阳极键合、[28]
1 新加坡南洋理工大学电气与电子工程学院,邮编 639798 2 巴黎第七大学材料与量子现象实验室,邮编 F-75025,巴黎,法国 3 新加坡科技研究局微电子研究所,邮编 117685 我们报告采用标准 CMOS 兼容后端工艺在 12 英寸玻璃基板上大规模制造功能完备的射频 (RF) 表面离子阱。采用成熟的 12 英寸铸造后端工艺(电镀铜和金饰面)直接在玻璃晶片基板上制造表面电极。我们通过用激光冷却的 88 Sr + 离子加载离子阱来测试它。该离子阱在 33 MHz 频率下 RF 幅度在 100 – 230 V 范围内时表现出稳定的操作。当真空室压力为 5 × 10 -11 mbar 时,离子寿命约为 30 分钟,这展现出在 CMOS 兼容且具有成本效益的平台上采用标准代工工艺实现量子计算系统未来的巨大潜力。
摘要:研制了一种基于硅芯片的双层三维螺线管电磁动能收集器,可高效将低频(<100 Hz)振动能转化为电能。利用晶圆级微机电系统 (MEMS) 制造形成金属铸造模具,然后采用随后的铸造技术将熔融的 ZnAl 合金快速(几分钟内)填充到预先微加工的硅模中,在硅片中制作 300 匝螺线管线圈(内螺线管或外螺线管均为 150 匝),以便锯切成芯片。将圆柱形永磁体插入预蚀刻的通道中,以便在外部振动时滑动,该通道被螺线管包围。收集器芯片的尺寸小至 10.58 mm × 2.06 mm × 2.55 mm。螺线管的内阻约为 17.9 Ω。测得的最大峰峰值电压和平均功率输出分别为 120.4 mV 和 43.7 µ W 。电磁能量收集器的功率密度有很大的提高,为 786 µ W/cm 3 ,归一化功率密度为 98.3 µ W/cm 3 /g 。实验验证了电磁能量收集器能够通过步行、跑步和跳跃等各种人体运动来发电。晶圆级制造的芯片式螺线管电磁收集器在性能均匀、尺寸小和体积大的应用方面具有优势。
在减小移动设备外形尺寸和增加功能集成度方面,晶圆级封装 (WLP) 是一种极具吸引力的封装解决方案,与标准球栅阵列 (BGA) 封装相比具有许多优势。随着各种扇出型 WLP (FOWLP) 的进步,与扇入型 WLP 相比,它是一种更优化、更有前景的解决方案,因为它可以在设计更多输入/输出 (I/O) 数量、多芯片、异构集成和三维 (3D) 系统级封装 (SiP) 方面提供更大的灵活性。嵌入式晶圆级球栅阵列 (eWLB) 是一种扇出型 WLP,可实现需要更小外形尺寸、出色散热和薄型封装轮廓的应用,因为它有可能以经过验证的制造能力和生产良率发展为各种配置。eWLB 是一种关键的先进封装,因为它具有更高的 I/O 密度、工艺灵活性和集成能力。它有助于在一个封装中垂直和水平地集成多个芯片,而无需使用基板。结构设计和材料选择对工艺良率和长期可靠性的影响越来越重要,因此有必要全面研究影响可靠性的关键设计因素。