在传感器的使用寿命截止之前对其进行能量补充是无线可充电传感器网络 (WRSN) 延长其使用寿命的重要组成部分。在小规模 WRSN 中,已证明由单个无线充电车辆 (WCV) 进行的多节点充电是有效的。在大规模 WRSN 中,大多数现有方案都会部署多个 WCV,以使用多节点充电同时对传感器充满电。传感器完全充电可以最大限度地减少 WCV 行驶所需的能量。然而,它可能无法在截止日期之前为许多传感器充满电。在本文中,我们的目标是最大限度地减少死机传感器的数量,同时最大限度地缩短传感器的平均死机时间。为了实现该目标,首先考虑传感器的能量需求和 WCV 的运动,将待充电的传感器分配到 WCV 之间。其次,提出了一种多节点部分充电方案,其中 WCV 充电范围内的传感器可以多次部分充电,直到传感器充满电。仿真结果表明,所提方案在最小化死传感器数量方面优于现有方案,并且产生更短的传感器平均死传感器持续时间,证明了我们方案的有效性。
图 4-21:苏格兰 ULEMCo 改装的重型货车 (道路除雪机) ............................................................................. 50 图 4-22:法夫的垃圾收集车 (WCV) 改装为柴油/氢“双燃料”运行 ............................................................................................................. 51 图 4-23:在都柏林试用的氢燃料电池公交车 (44) ............................................................................................. 52 图 4-24:氢燃料电池双层公交车现在在都柏林和拉托斯之间运营 ............................................................................. 52 图 4-25:贝尔法斯特的氢燃料电池双层巴士 ............................................................................................. 53 图 4-26:阿伯丁的垃圾收集车改装为柴油/氢“双燃料”运行 (HyTIME 项目/H2 阿伯丁) .............................................................................................................................图 4-28:牛津郡的垃圾收集车 (WCV) 转换为柴油/氢“双燃料”运行 ............................................................................................................................................. 54 图 5-1:2020 年罗得岛风电场每小时风力发电量和调度代表性 ............................................................................................................................................. 56 图 5-2:基于罗得岛地区风电场数据的 2020 年调度可用性 ............................................................................................. 57 图 5-3:假设 84MW 风电场的电力出口优先从 50MW 电解器生产氢气 ............................................................................................................. 57 图 5-4:假设 84MW 风电场的电力出口优先于高达 21MW 的电力出口 ............................................................................................................................. 58 2020 年 1MW 太阳能发电场的年发电量 (47) ......................................................................... 58 图 5-6:2020 年 1MW 太阳能发电场的夏季和冬季太阳能发电量比较 (47) ........................ 59 图 5-7:Gaybrook AGI 的估计天然气输送流量 ............................................................................. 61 图 5-8:Gaybrook 输送网络中天然气流量的每小时平均值 (顶部) 和每月平均值 (底部) 曲线 ................................................................................................................ 62 图 6-1:使用氢能枢纽模型进行技术经济计算的程序 ...................................................................................................... 66 图 6-2:需求情景下的电解器尺寸 ........................................................................................................................ 68 图 6-3:需求和供应主导情景下的存储尺寸 ........................................................................................................ 69 图 6-4:Mullingar 网络的体积需求与 0.5MW 和 1MW 输出的比较 ............................................................................................. 72 图 6-5:Tullamore/Clara 网络的体积需求与 0.5MW 和 1MW 电解器输出的比较 ............................................................................................................................................. 73 图 8-1:Rhode 氢燃料区域供热网络的可能布局 ............................................................................................................. 83 图 9-1:通过使用氢气替代家庭供热燃料来抵消二氧化碳 ............................................................................................................. 87 图 10-1:拟议的 Rhode 氢气示范项目示意图...................................................... 92