数字伏安显示 •显示焊接前后的参数。•方便参数设置 焊接循环选择器 •2T:按下扳机激活电弧,松开扳机激活循环结束。•4T:按下扳机启动循环,可以松开扳机。再次按下可停止循环。•点焊:在给定时间内提供焊接电流。焊枪连接器 步进时间 •用于设置点焊时间 底漆速度 •设置焊丝上升速度,以提高引弧效果。防粘 •调整焊接结束时“烧焦”焊丝的长度。此功能可避免焊丝粘在工件上。
起伏波浪能转换器 (WEC) 是点吸收器波浪能转换器的一种典型类型,具有较高的能量转换效率,但受粘性效应的影响很大。众所周知,此类波浪能转换器的底部形状对粘性起着重要作用,因此详细的定性研究至关重要。本文对底部形状对起伏波浪能转换器运动响应和能量转换性能的影响进行了数值研究。该数值模型基于势流理论建立,并在频域中进行粘性校正。考虑了底部为平底、锥形和半球形且位移相同的圆柱形波浪能转换器。研究发现,直径吃水比 (DDR) 较大的波浪能转换器受到的粘性效应相对较小,并能在更宽的频率范围内实现有效的能量转换。在DDR相同的情况下,平底的粘性效应最显著,其次是90°锥底和半球底;DDR较小时,半球底的能量转化性能最好;同样,DDR较大时,半球底和90°锥底的浮子的能量转化性能较好,平底的浮子最差。
要使波浪能实现商业可行性,大多数概念都要求将波浪能转换器部署在阵列、公园或农场中,如图 9.1 至 9.3 所示。这将降低电力子系统(例如电缆和带有变压器和其他电力电子设备的变电站)、系泊和地基、波浪测量仪器、维护和维修(船舶、起重机和更换部件)以及聘用具备所需专业知识的人员所需的基础设施成本。当波浪能转换器作为大型装置的一部分建造时,每个波浪能转换器的成本将会降低,而当设备安装在农场中时,单位海洋面积产生的能量将会增加。此外,可以在大多数波浪能转换器仍在运行的同时对少数波浪能转换器进行维护,这种冗余提高了所发电量的可靠性。根据波浪能转换器技术的不同,农场可以由几台设备到几百个部件组成。每个波浪能发电厂都会改变发电厂内外的波浪场,而产生的波浪场将是所有设备发出的所有散射波和辐射波的复杂叠加,这又会影响每个波浪能发电厂的动态。由于波浪会散射并沿所有水平方向传播,发电厂后方(入射波方向)的波浪能发电厂会影响背风区域的波浪能发电厂,使波浪发电厂的相互作用比风力发电厂的类似情况更为复杂。因此,要了解波浪发电厂的动态和性能以及发电厂外产生的波浪条件,必须充分了解流体动力学相互作用。由于这些将取决于许多参数,例如发电厂的布局、波浪能发电厂之间的间隔距离、系泊和 PTO 配置、波浪能发电厂的尺寸和特性、波浪条件和方向、水深测量等,因此问题的复杂性非常大,并且会随着相互作用设备的数量而增加。由于波浪发电厂的远场效应可能会影响波高和沉积物输送,对发电厂所在地的当地环境产生积极或消极的影响
水和能源委员会秘书处(WECS)已经根据综合水资源管理原则准备了河流盆地计划,水力发电开发总体规划以及战略环境和社会评估(SESA)。为了有效执行这些计划,与相关利益相关者的计划的所有权至关重要。在这方面,联邦省和地方利益相关者之间计划的计划将是实施计划的关键一步。为了有效地传播计划的信息,WEC计划在五个战略地点,Koshi河盆地的Biratnagar,Bibhara,Gandaki River盆地的Pokhara,Karnali River Basin,Hetauda,Hetauda的Hetauda,Bagmati River Basin和Kathmandu valley的一个。
水和能源委员会秘书处(WECS)是尼泊尔政府的重点组织,用于收集,分析和发布与水和能源有关的数据。WECS自成立以来正在发布能源概要报告。此概述报告是尼泊尔能源部门的旗舰出版物。当前的报告已准备好提供有关079/80(2023)财政年度尼泊尔能源供应和消费的关键趋势和见解的信息。此外,它提供了不同部门的能源消耗。住宅,商业,工业等本财年079/80的总体能耗估计为532.42PJ,比上一年的640 PJ消耗低16.81%(FY 078/79)。尼泊尔的能源资源归类为传统能源(燃油,农业残留物和动物粪便),商业能源(煤炭,石油产品,电力)和可再生能源(太阳能,风,风,微水,沼气等)。
摘要:动力输出装置 (PTO) 的稳定性是波浪能转换器 (WEC) 最重要的考虑因素之一。PTO 装置将波浪吸收器 (WA) 装置产生的机械能转换为有用的电能。由于实际波浪运动的输入能量变化剧烈,PTO 装置产生的电能波动很大,对电气和电子设备有潜在危害。本文提出了一种用于波浪能转换器的改进型液压 PTO (HPTO)。改进型 HPTO 装置包括双高压蓄能器 (HPA) 模块和流体能量控制 (FEC) 模块,可显著提高发电机在不规则波浪情况下产生的电能。使用 Simscape Fluids 工具箱在 MATLAB/Simulink 中构建了带有传统和改进型 HPTO 装置的波浪吸收器装置的完整模型。使用遗传算法优化了 FEC 控制策略的参数。使用五个不规则波输入对改进型 HPTO 装置模型进行了仿真,以评估其在不规则条件下的性能。还研究了 HPA 压力约束对改进的 HPTO 装置性能的影响。总体而言,模拟结果表明,改进的 HPTO 装置能够在不规则海况下产生高达 87.3% WEC 的稳定功率。
摘要:大多数波浪能转换器 (WEC) 都是为在高纬度高能海域运行而设计的,这限制了它们在通常以较温和的条件为主的地区的表现。本研究评估了下加利福尼亚州海岸满足分散式能源计划 (DES) 的农场中完整测试阶段 WEC 的表现,该海岸被认为是墨西哥太平洋沿岸最有活力的地区之一。进行了高分辨率 11 年近岸波浪后报,并使用声学多普勒流速仪 (ADCP) 数据进行了验证,以表征研究区域的波浪能资源。从波浪能气候学中确定了两个热点。在这些地点,根据其功率矩阵确定了七种知名 WEC 技术的提取能力。最后,估计了小型 WEC 农场提取的功率,这些农场拥有满足 DES 所需的最少设备数量。研究区域具有中等的波浪能可用性,季节性明显,年际变化较小。在所有评估的设备中,WaveDragon 提取的波浪能最高;然而,Pelamis 的性能最好,最大月平均容量系数高达 40%。建议将 WEC 农场与存储模块或混合可再生系统相结合,以满足能量较少的夏季月份的连续 DES。
在风能转换系统 (WECS) 中,电能质量和能量转换效率是控制算法的关键目标。这两点是自相矛盾的,很难权衡,因为提高转换效率也可能会增加输出信号的不稳定性。在当前的工作中,我们提交了一种风力涡轮机控制方案,以确保稳定电力并实现基于电池的变速 PMGS 系统中的可变负载请求。在提交的方案中,模型预测控制 (MPC) 与模糊逻辑相结合,以实现这两种不同方法的优势。建议的控制器可以提高风力涡轮机的功率可靠性性能。根据获得的结果,所提出的拓扑克服了传统的比例/积分 (PI) 模型,在步进超调响应和总谐波失真测量方面分别实现了近 1.1% 和 1.13% 的利润。
有必要删除从R-1和R-2分区区的主要公用事业的分离要求,以遵守第102-1123号公共法案。PA 102-1123要求更改风能转换系统(WEC)和太阳能发电设施的县法规,但并未反映在2023年5月11日麦克莱恩县委员会批准的《风和太阳能设施》的文本修正案中。PA 102-1123指出:“标准可能包括本节中规定的所有要求,但不包括对商业风能设施或商业太阳能设施的要求,这些要求比本节中规定的更具限制性。”在2023年修改文本时,本节中允许的挫折要求包括在内。