进行了本研究,以评估昆虫致病性线虫,Steinernema Carpocapsae Weiser和三种昆虫病变真菌(Metarhizium arisopliae(Metschn。)(Metschn。)Sorokin,Trichoderma Harzianum Rifai和T. Viride Pers。)针对Spodoptera Frugiperda的第二和第四幼虫龄(J. E. Smith)。结果表明,CarpoCapeAe在接种后4天(DPI)使用叶片浸入法(DPI)的LC 50值分别为52.03和4.11感染力少年(IJS)ML -1,在接种后4天,在接种后使用叶片浸出方法,使脆性链球菌的第二和第四个幼虫龄出现了明显的死亡率。另一方面,三种测试的昆虫病作用真菌对弗鲁吉帕尔达链球菌的幼虫龄产生了较强的毒性。真菌T。arzianum在第二个幼虫龄(LC 50 = 1.1×10 7孢子ML -1)和M. Anisopliae上显示出最高的杀虫活性,在10 dpi后,在第四个幼虫龄(LC 50 = 1.5×10 7个孢子ML -1)上表现出最高的杀虫活性。我们的结果表明,在250 IJS ML -1的幼虫中完全抑制了帕克环链球菌和成年幼虫的成年出现。昆虫致病性线虫和真菌对S. frugiperda幼虫龄的致命作用表明,这些生物控制剂在这种侵入性昆虫的综合害虫管理程序中可能是有用的候选者。
* 西弗吉尼亚大学法学院法学讲师,西弗吉尼亚州摩根敦。本文由霍奇斯基金教职员工研究经费资助。作者感谢《科罗拉多技术法杂志》的编辑。** 卡内基梅隆大学,宾夕法尼亚州匹兹堡 *** 西弗吉尼亚大学法学院法学教授,西弗吉尼亚州摩根敦 1。参见,例如,Chris Stokel-Walker,《生成式人工智能即将为律师服务》,《WIRED》(2023 年 2 月 21 日上午 10:00),https://www.wired.com/story/chatgpt-generative-ai-is-com- ing-for-the-lawyers/ [https://perma.cc/6R7R-WE4T](讨论律师事务所如何在实践中使用大型语言模型等生成式人工智能工具);David Rotman,《ChatGPT 即将彻底改变经济》。我们需要决定它是什么样子,麻省理工学院。R EV。(2023 年 3 月 25 日),https://www.technolo- gyreview.com/2023/03/25/1070275/chatgpt-revolutionize-economy-decide-what-looks- like/ [https://perma.cc/6RBZ-QQAJ](引用“麻省理工学院劳工经济学家和技术对就业影响方面的领先专家”指出律师事务所正在使用生成式人工智能)。2.参见 Benjamin Weiser,ChatGPT 律师被命令考虑寻求宽恕,纽约时报(2023 年 6 月 22 日),https://nytimes.com/2023/06/22/nyregion/lawyers- chatgpt-schwartz-loduca.html [https://perma.cc/59UB-YECR](例如,两名纽约律师因使用 ChatGPT 起草一份包含大量“虚构”案件的简报而受到联邦法官的制裁)。
11 阿尔凯西和麦克法兰,2023;阿塔鲁里等人。 2023;基督教 2023;法郎 2023;胡赛尼、拉斯穆森和雷斯尼克 2023;吉等人。 2023;基德和比尔汉 2023; Lee、Bubeck 和 Petro 2023;莱特曼等人。 2023;刘、张、梁 2023;梅加赫德等人。 2023;梅策、莫兰丁-雷斯、罗兰-梅策和弗洛林多 2023 年; OpenAI 2023 年 3 月 27 日;波里茨 2023;韦斯和梅斯 2023 年;威瑟 2023;张,等人。 2023;赵,等人。 2023; Zhavoronkov 2023。12 Busch 2023;电子隐私信息中心 2023;Huang 2023;Hosseini 和 Horbach 2023;Lauer、Constant 和 Wernimont 2023;Meskó 和 Topol 2023;美国国立卫生研究院 2023;Schwartz 和 Rogers 2022。13 请参阅 registrar.uky.edu/ferpa 和 registrar.uky.edu/ferpa/ferpa-faculty-and-staff-faq。14 请参阅 www.research.uky.edu/office-research-integrity。15 Bender、Gebru、McMillan-Major 和 Shmitchell 2021;Brown 等人 2020;Caliskan、Bryson 和 Narayanan 2017;Hovy 和 Prabhumoye 2021; Liang, Wu, Morency 和 Salakhutdinov 2021;Najibi 2020;Nazer 等人 2023;Nicholas 和 Bhatia 2023;Schwartz 等人 2022;Small 2023 年 7 月 4 日;Whittaker 等人 2019;Zhuo, Huang, Chen 和 Xing 2023。16 Appel、Neelbauer 和 Schweidel 2023;Lucchi 2023;Saveri 和 Butterick 2023;Sobel 2018;Strowel 2023;Thorbecke 2023;Zirpoli 2023。17 Chen, Zaharia 和 Zou 2023。
2.2 物联网智能显示技术 周良、张玲玲、周久斌、刘金娥、秦峰,上海天马微电子股份有限公司,上海,中国 2.3 集成多屏驱动器的显示模块 周良、姚璐、张玲玲、周久斌、杜万春、刘金娥、秦峰,天马微电子集团,上海,中国 2.4 自由曲面和曲面显示器的高精度光学贴合 Eugen Bilcai,汉高集团,美国密歇根州麦迪逊高地 2.5 汽车外饰显示器的数字化造型和安全性 Johnathan Weiser、Richard Nguyen、Kimberly Peiler,欧司朗光电半导体公司,美国密歇根州诺维 Ulrich Kizak,欧司朗光电半导体公司,德国雷根斯堡 2.6 传感应用中高质量 SNR 的新方法 Gerald Morrison,SigmaSense,美国德克萨斯州奥斯汀 第三场:平视显示器 联合主席: Ross Maunders,FCA US LLC,美国密歇根州奥本山 Dan Cashen,大陆汽车集团,美国密歇根州奥本山 3.1 用于平视显示器应用的漫射微透镜阵列 Naoki Hanashima、Mitsuo Arima、Yutaka Nakazawa,迪睿合株式会社,日本宫城县多贺城市 Kazuyuki Shibuya,迪睿合株式会社,日本宫城县登米市 Jingting Wu,迪睿合美国公司;美国加利福尼亚州圣何塞 3.2 人类对平视显示器重影的感知研究 Steve Pankratz、William Diepholz、John Vanderlofske,3M 公司,美国明尼苏达州圣保罗 3.3 使用自由曲面光学元件的 3D AR HUD 计算全息显示器 Hakan Urey,CY Vision,美国加利福尼亚州圣何塞
C. Amsler A,D。BarnaB,M.N。 bayo C,AD,H。Breuker和,M。Bumbar F,,M。Cerwek A,G。Costantine G,A。Dax H,R。FerragutC,Ad,A.Forsyth I T. Higuke k,M.Hori I,M。HoriI,L ∗,E.D. Venturels G,A。WeiderA,E。WidmannA ∗,Y. Y. Y. Y. Y. Y. and Stefan Meyer Institute,B Wigner物理研究中心,Milae的C Polytechnic,D Infn Mid Mid Midmarator,Riken,Riken,Riken,riken,Fing thement offental offertaltal Physick of the cern,cern of the cern of the cern,cern of the cern,cern of the cern,cern,cern,cern,cern,cern,cern,cern,cern,cern,cern the of。 Schrere Institute,物理学系,我派遣土地学,J派上了伦敦大学学院,伦敦大学学院,K综合学和NU-Clear Science,京都大学,L Max-Plank-Plank-instituut f ur,M物理学研究所,The Tysics,The The The Fisics,n The Fisron,DELERRON研究研究,物理和天文学的p e,奥尔胡斯大学∗共同发言人C. Amsler A,D。BarnaB,M.N。bayo C,AD,H。Breuker和,M。Bumbar F,,M。Cerwek A,G。Costantine G,A。Dax H,R。FerragutC,Ad,A.Forsyth I T. Higuke k,M.Hori I,M。HoriI,L ∗,E.D. Venturels G,A。WeiderA,E。WidmannA ∗,Y. Y. Y. Y. Y. Y. and Stefan Meyer Institute,B Wigner物理研究中心,Milae的C Polytechnic,D Infn Mid Mid Midmarator,Riken,Riken,Riken,riken,Fing thement offental offertaltal Physick of the cern,cern of the cern of the cern,cern of the cern,cern of the cern,cern,cern,cern,cern,cern,cern,cern,cern,cern,cern the of。 Schrere Institute,物理学系,我派遣土地学,J派上了伦敦大学学院,伦敦大学学院,K综合学和NU-Clear Science,京都大学,L Max-Plank-Plank-instituut f ur,M物理学研究所,The Tysics,The The The Fisics,n The Fisron,DELERRON研究研究,物理和天文学的p e,奥尔胡斯大学∗共同发言人
尾注 1. 根据即将发布的报告《妇女、和平与安全、技术与国家安全:我们正在建设什么样的世界?》,作者:Sahana Dharmapuri 和 Jolynn Shoemaker 2. Dan Hendrycks、Mantas Mazeika 和 Thomas Woodside,《灾难性人工智能风险概述》,人工智能安全中心,2023 年 10 月 9 日,https://arxiv.org/pdf/2306.12001.pdf 3. 联合国裁军研究所,《算法偏见和日益自主的技术武器化》,2018 年,https://unidir.org/files/publication/pdfs/ algorithmic-bias-and-the-weaponization-of-increasingly-autonomous-technologies-en-720.pdf 4. Zachary Arnold 和 Helen Toner,《人工智能事故:一种新兴威胁:可能造成什么后果?》会发生什么以及该怎么办”,安全与新兴技术中心”,2021 年 7 月,https://cset.georgetown.edu/publication/ai-accidents-an-emerging-threat/ 5. Ray Acheson,“性别与偏见:性别与杀手机器人有什么关系?”,阻止杀手机器人,2021 年,https://www.stopkillerrobots.org/wp-content/uploads/2021/09/Gender-and-Bias.pdf 6. Dan Hendrycks、Mantas Mazeika 和 Thomas Woodside,“灾难性人工智能风险概述”,人工智能安全中心,2023 年 10 月 9 日,https://arxiv.org/pdf/2306.12001.pdf 7. Nina Jankowicz,“深度伪造的威胁不是假设的。女性每天都能感受到这一点”,《华盛顿邮报》,2021 年 3 月 25 日,https://www.washingtonpost.com/opinions/2021/03/25/threat-deepfakes-isnt-hypothetical-women-feel-it-every-day/ 8. Beatrice Nolan,“OpenAI 测试表明,最新版本的 ChatGPT 告诉 TaskRabbit 员工,它是视障人士,需要帮助解决 CAPTCHA”,《商业内幕》,2023 年 3 月 16 日,https://www.businessinsider.com/gpt4-openai-chatgpt-taskrabbit-tricked-solve-captcha-test-2023-3?IR=T 9. Benjamin Weiser 和 Nate Schweber,“ChatGPT 律师自我解释”,《纽约时报》,2023 年 6 月 8 日, https://www.nytimes.com/2023/06/08/nyregion/lawyer-chatgpt-sanitians.html 10. Lucina Di Meco 和 Kristina Wilfore,“性别虚假信息是一个国家安全问题”,布鲁金斯学会,2021 年 3 月 8 日,https://www.brookings.edu/articles/gendered-disinformation-is-a-national-security-problem/ 11. Nina Jankowicz,“深度伪造的威胁并非假设。女性每天都能感受到这一点”,《华盛顿邮报》,2021 年 3 月 25 日,https://www.washingtonpost.com/opinions/2021/03/25/threat-deepfakes-isnt-hypothetical-women-feel-it-every-day/ 12. Victoria Krakovna 和 Janos Kramar,“对于受过训练的智能体来说,权力寻求是可能且具有预测性的”,DeepMind,2023 年,https://arxiv.org/abs/2304.06528 13. Dan Hendrycks、Mantas Mazeika 和 Thomas Woodside,“灾难性人工智能风险概述”,人工智能安全中心,2023 年 10 月 9 日,https://www.safe.ai/ai-risk#Deception 14. Ray Acheson,“性别与偏见:性别与杀手机器人有何关系?”,Stop Killer Robots,2021 年, https://www.stopkillerrobots.org/wp-content/uploads/2021/09/Gender-and- Bias.pdf 15. 克里斯蒂安·阿隆索、悉达思·科塔里、西德拉·雷曼、“人工智能如何扩大富国与穷国之间的差距”,国际货币基金组织博客,2020 年 12 月 2 日,https://www.imf.org/en/ Blogs/Articles/2020/12/02/blog-how-artificial-intelligence-could-widen-the-gap-between-rich-and-poor-nations 16. Leonardo Nicoletti 和 Dina Bass,“人类有偏见。生成式人工智能甚至更糟糕”,彭博社,2023 年,https://www.bloomberg.com/graphics/2023-generative-ai-bias/
山谷县简史 圆谷、长谷、高谷、斯科特谷等地都属于名副其实的山谷县,该县成立于 1917 年。山谷县北起爱达荷县,南至博伊西县,其多样的地貌自古以来就吸引着矿工、农民、伐木工和休闲者。该地区的早期居民是北肖肖尼 (Sheepeater) 印第安人。这个游牧部落在萨蒙河流域的峡谷中过冬,特别是沿着中叉和南叉,然后在夏天前往长谷。他们在这里打猎、捕鱼和采集根茎。每年夏天结束时,他们会在佩耶特湖南岸相聚,与内兹珀斯人和韦泽人部落成员一起庆祝季末。山谷县各地都可以找到印第安人活动的遗物。虽然毛皮猎人在 1815 年至 1840 年间经过该地区,但爱达荷淘金热才将第一批白人移民带到该地区。1862 年佛罗伦萨和沃伦发生重大淘金事件后,矿工们沿着佩耶特河从塞西什峰穿过朗德山谷向南行进。他们没有取得什么成功,该县早期的采矿企业大多都昙花一现。雷山是个例外,它在 20 世纪初吸引了数千名矿工和投资者来到该县东部偏远地区。据估计,有 3000 人在罗及其周边地区工作