佛罗伦萨的站点支持联盟 (SEL) 由来自 85 个临床研究站点、制药和生物技术赞助组织、合同研究组织和其他合作组织的代表组成。这些利益相关者致力于推动全球临床运营的创新。SEL 的全球法规工作组是大型管理机构的一个小组委员会,致力于促进更强有力的合作,并推动利益相关者群体对法规的更标准化解读。
图1 - 本研究中使用的节肢动物的系统发育。整个基因组重复(WGD)的时机由红色星星指示;预先提出的谱系具有灰色线,重复的基因组具有黑色线条。基因组组装水平在物种二项式下方指示,以八个染色体级蜘蛛和三个用于同步分析的非WGD外群基因组组件的粗体。
摘要前提:毛藻科(康乃馨家族)已经多次过渡到较冷的气候和坐垫植物适应性的收敛,这表明它们可以为冷适应研究提供自然系统。先前的研究表明,假定的古代整体基因组重复(WGD)与小众转移到整个caryophylales的寒冷气候相关。在这里,我们探索了这些发现的Caryophyllaceae中发现的转移之一的基因组变化。方法:我们构建了一个数据集,该数据集结合了26个新生成的转录组与45个已发表的转录组,其中包括七个属的11种垫子植物物种。使用此数据集,我们推断出了毛藻科的过时的系统发育,并将古老的WGD和基因重复映射到系统发育中。我们还检查了富含与气候变化有关的基因重复的功能组。结果:星体拓扑主要与当前家庭内部关系共识一致。我们推断了家庭中的15个假定的古老WGD,其中包括以前尚未发表的8个。最古老的古老WGD(大约64.4 - 5670万年前),WGD1被发现与先前的研究转向较冷的气候有关。与泛素化相关的基因区域在WGD1后保留的基因重复中过分代表性,而靠垫植物在colobanthus和Eremogone中趋同保留的基因区域以及其他功能注释。转录组数据是有助于植物中深层进化模式中阐明异质性的关键资源。结论:古代WGD引起的基因家族扩张可能导致了毛藻科中寒冷气候生态位的转变。
基因复制产生新的遗传物质,可以有助于基因调节网络和表型的演变。重复的基因可以对祖先函数和/或新功能性进行下功能化,以实现新功能。我们以前发现在芳基肺化合物的祖先,包括蜘蛛和蝎子在内的谱系中有整个基因组重复(WGD),但不包括螨虫,tick虫和收割机等其他蛛网。许多重复的同源基因(包括两个HOX簇)在蜘蛛中证明了这一WGD。然而,目前尚不清楚哪些同源副校友由WGD与诸如串联杜普尔(Tandem du Plications)等小规模事件相比。理解这是确定WGD对蛛网基因组evo lution的贡献的关键。在这里,我们表征了重复的同源基因在八个染色体级蜘蛛基因组中的分布。我们发现,蜘蛛中大多数重复的同源基因与WGD的起源一致。我们还发现了所有八种物种中的两个保守同源基因簇的副本,包括HOX,NK,HRO,IRX和正弦簇。一致地,我们观察到每个集群的一个副本是根据基因含量和组织而退化的,而另一个群体则更加完整。专注于NK群集,我们发现了与Har Vestman phalangium opilio中的单拷贝直系同源物相比,蜘蛛parasteatoda tepidariorum中重复的NK基因之间调节性亚功能的证据。我们的研究提供了对蜘蛛进化过程中多种模式对同源物基因曲目的相对贡献的新见解和NK基因的功能。
背景和环境这是基于生命科学系米尔纳进化中心的克拉克实验室的全职研究助理职位。该作用是通过Slola项目赠款资助的“重新批准了整个基因组重复和重浮子化在真核生物进化中的作用”,从生物技术和生物学科学研究委员会中,嵌入了一个联盟,嵌入了一个嵌入了包括Bath,Bath,Bath,Bristol,Bristol,Bristol,Edinbur,爱丁堡,牛津大学,Wagenenity Collector okinitionder collition collition dubl usinawa的联盟中和De Biologia Evolutiva(巴塞罗那)。整个项目旨在建立整个基因组重复在真核生物进化中的普遍性,性质和影响,尤其集中在重纤维化过程上。该项目中的作用将是负责系统发育分析,生物信息学管道的发展以及确定整个基因组重复(WGD)事件的性质和时机的新方法的发展以及二倍化模式的新方法的发展。这些方法将在真核生物之间开发和应用,以发现新的WGD事件并更好地表征已知事件。此工作包由汤姆·威廉姆斯教授(巴斯大学)和安东尼·雷德蒙德博士(UCD)共同领导,他们将密切合作。工作是计算和基于办公室的;它不涉及实验室工作。
简介多倍体一词是指包含两组以上染色体的细胞。在多个细胞物质中,当生殖细胞经历全基因组重复(WGD)并引起完整的多倍体生物,或者在亚生物下,只有在否则二倍体生物体中的体细胞中,就可以在生物水平上发现多倍体。在这些不同类型的多倍体之间,多倍体化的后果可能会有显着差异。在这里,我们重点介绍多倍体在亚生物水平上的后果,概述了正常生理和疾病中体细胞的功能。在发现染色体后不久,在十九世纪后期对多倍体细胞进行了第一次观察(Wilson,1925年)。在过去的一个世纪中,对植物和昆虫的研究极大地有助于我们理解体细胞多倍体的出现,在其他地方进行了广泛的审查(Almeida等,2022; Edgar等,2014; Hua and Orr-Weaver,2017)。总而言之,体细胞可以通过细胞融合或经过非规范细胞周期复制其DNA,但不分为两个子细胞。Many terms have been used to describe these non-canonical cell cycles but, in essence, they can be divided into two types: non-canonical cell cycles in which cells alternate between S and G phase, which we refer to as ‘ endoreplication cycles ' , and non-canonical cell cycles in which cells undergo all phases of the canonical cell cycle but exit M phase before the initiation orcompletion
关于摩拉mus大学鹿特丹的硕士课程开发研究的报告,本报告将NVAO的评估框架作为有限计划评估的评估框架作为起点。有关计划硕士计划开发研究名称的行政数据:开发研究CROHO编号:75012计划级别:计划的硕士学位:学分学术数:88 EC专业或轨道:该计划提供以下专业化:冲突,重建和人类安全(CRS);儿童和青年研究(CYS);发展研究(DRES);发展经济学(ECD);环境与可持续发展(ESD);治理与民主(G&D);人权,发展和社会正义(HDS);国际政治经济和发展(IPED);地方发展策略(LDS);贫困研究与政策分析(POV);公共政策与管理(PPM);人口,贫困和社会发展(PPSD);农村生计与全球变化(RLGC)(农业和农村发展,2011 - 12年);工作,就业和全球化(WEG);妇女,性别,发展(WGD)地点:国际社会学研究所,研究的海牙模式:认证的全职届满:2012年11月13日,评估委员会发展研究访问了鹿特丹伊拉斯mus大学的国际社会研究所(ISS),2011年9月16日在15和16号举行。有关机构机构名称的行政数据:伊拉斯mus大学鹿特丹机构地位:公共资助的机构结果机构质量保证评估:有关该计划的待定定量数据,有关该计划所需的有关该计划的必要定量数据均包含在Appendix H.
亚麻 ( Linum usitatissimum ) 也称为普通亚麻或亚麻籽,在温带地区作为油料和纤维作物种植,可能已被人类使用长达 30,000 年 ( Kvavadze et al., 2009 )。纤维亚麻是栽培亚麻的主要形态类型之一,也是驯化作物中最古老的形态,为人类提供了纤维来源 ( Hickey, 1988 )。据报道,对纤维亚麻 ( 纤维用途 ) 和亚麻籽亚麻 ( 油料用途 ) 的破坏性选择导致植物类型在形态、解剖学、生理学和农艺性能上存在很大差异 ( Diederichsen and Ulrich, 2009 )。纤维亚麻比油料用途亚麻相对较高、分枝较少、种子较少 ( Zhang et al., 2020 )。在过去十年中,纤维工业开发出高价值产品,应用于汽车、建筑工业、生物燃料工业和纸浆(Diederichsen 和 Ulrich,2009 年)。亚麻制成的纺织品在西方国家被称为亚麻布,传统上用于床单、内衣和桌布。亚麻仍然是一种小作物,主要原因是过去十年来其产量过低(Soto-Cerda 等人,2014 年)。准确的参考基因组已成为遗传学研究不可或缺的资源,尤其是对于功能基因图谱和标记辅助选择(MAS)。亚麻基因组的组装可以显著加速亚麻育种的进程。受益于亚麻参考基因组的发布,人们获得了不少与重要农艺性状相关的候选基因 ( Soto-Cerda et al., 2018; Xie et al., 2018a,b; You et al., 2018b; Guo et al., 2020 )。第一个亚麻基因组组装于 2012 年使用 Illumina 短双端和配对读段 (CDC Bethune v1) 发布 ( Wang et al., 2012 )。随后,You 等人使用光学、物理和遗传图谱 (CDC Bethune v2) 将这些碎片化的重叠群锚定到 15 个假分子中 ( You et al., 2018a )。最近还使用短双端读段和 Hi-C 测序发布了三个不同品种的基因组组装 ( Zhang et al., 2020 )。几个月前首次发表了使用错误长读长的亚麻组装体(Dmitriev et al., 2021)。然而,即使使用 Oxford Nanopore 长读技术,所有这些组装体的连续性都非常差。这些组装体最大的重叠群 N50 为 365 Kb。亚麻基因组最近经历了全基因组复制 (WGD) 事件,充满了重复元素(You et al., 2018a)。在使用短读长或错误长读长的组装过程中,同源序列或重复序列之间很容易发生崩溃。使用不同的软件和 Oxford Nanopore 长读长组装体,组装体大小差异很大,证明了这一点(Dmitriev et al., 2021)。