摘要:用荧光材料掺杂的耳语画廊模式(WGM)谐振器在生物传感中发现了极大的应用。他们不需要特殊条件来激发WGM内部的激发,这为体内感测提供了基础。当前,体内WGM传感器的材料问题是实质性的,因为它们的荧光应具有稳定的光学特性,并且应该具有生物相容性。为了解决这个问题,我们提出了5-7 µm的WGM微孔子,其中掺杂剂由碳量子点(CDS)制成。cds是生物相容性的,因为它们是由碳产生的,并显示出明亮的光学发射,根据激发波长,它显示出不同的频带。此处开发的WGM传感器通过检测牛血清白蛋白分子测试为无标记的生物传感器。结果显示WGM频率转移,检测极限降低至10-16 m。
摘要:本文研究了人工神经网络(ANN)作为可行的数字双胞胎或工程系统中典型的耳语库模式(WGM)光学传感器的替代方案,尤其是在机器人技术等动态环境中。由于其脆弱性和有限的耐力,因此在这种情况下,基于微光学谐振器的WGM传感器是不合适的。为了解决这些问题,本文建议了专门为系统设计的ANN,并利用了WGM传感器的高质量因子(Q -Factor)。通过将适用性和耐力扩展到动态环境并减少脆弱性问题,ANN试图进行高分辨率的测量。为了最大程度地减少后处理要求并保持系统鲁棒性,研究目标是使ANN充当WGM传感器输出的代表性预测指标。在本文中使用Gucnoid 1.0类人形机器人作为一个例子,以说明WGM光学传感器如何改善各种应用的类人形机器人性能。实验的结果表明,ANN输出和实际WGM偏移的灵敏度,精度和分辨率是等效的。因此,删除了机器人技术行业中广泛使用高级感知的当前障碍,并验证了ANN作为虚拟替代物或数字双胞胎在机器人系统中的真实WGM传感器的潜力。因此,本文不仅对符合动态环境的机器人技术中使用的传感技术非常有益,还可以对工业自动化和人机界面进行有益。
机械振动的色散限制了纳米光机械调制。在这项工作中,我们提出了一种利用弹性局部共振(也称为回音壁模式 (WGM))的光机械调制。我们发现我们的结构支持两个四极和两个六极弹性 WGM,它们是非色散的,以避免位移场局域在金纳米盘 (AuND) 上时产生损耗。我们通过数值证明局域表面等离子体共振 (LSPR) 和 WGM 之间的耦合与弹性模式的对称位移和 AuND 中声子模式的强隔离有关。通过计算四个 WGM 在不同变形下偶极 LSPR 的波长偏移来评估调制的幅度。对这四个 WGM 进行详细比较使我们能够确定耦合效率更高的 WGM。此外,这种同时限制产生了大的声-等离子体耦合,可用于设计具有等离子体响应的新型机械传感器,作为新型声-等离子体装置的潜在应用和创新。
摘要 - 这项研究对近紫外光谱中的低语画廊模式(WGM)微球光学特性进行了全面分析,并通过频率锁定来减少激光线宽的实际实现。由于利用了坚固的角度抛光纤维,可以实现光耦合,从而探索了各种耦合行为。固有的Q 0-因子,在2下测量。2×10 8,以及7个技巧。3×10 4,在420 nm处报告。讨论了导致Q 0-因素的物理机制,并绘制了改善性能的路线。通过将频率锁定到WGM微孔的高Q共振上,已经获得了外部空腔二极管激光从887 kHz降低到91 kHz的线宽。对这些结果的研究将绩效评估带来,从而对局限性有透彻的了解并确定增强降噪的潜在途径。如此高的Q因子和高技巧是简化基于WGM微孔子的光子设备的关键要素。
介电微球内的光能流通常与光波矢量同向。同时,如果微球中的光场与高质量空间本征模式(回音壁模式 - WGM)之一共振,则阴影半球中会出现反向能量流区域。由于增加了光学捕获潜力,该区域具有相当大的实际意义。在本文中,我们考虑了一个沿粒子直径制造的带有充气单针孔的穿孔微球,并对纳米结构微球中 WGM 激发的特性进行了数值分析。针孔隔离了共振模式的能量回流区域,并将穿孔微球变成了高效的光镊。据我们所知,这是第一次揭示 WGM 共振时针孔中回流强度的多次增强,并讨论了其操纵方式。
Bodhisatwa Mazumdar博士是计算机科学与工程系的副教授,以及IIT Indore的副院长R&D II。他获得了硕士学位和Ph.D.印度科技研究所(IIT)Kharagpur的学位,印度哈拉格布尔。他是阿布扎比,阿布扎比的纽约大学阿布扎比纽约大学的卓越实验室设计的博士后研究员。他当前的研究领域包括用于安全性的逻辑综合技术,对加密原语的优化硬件实现以及基于机器学习的基于机器学习的侧渠道攻击和对策。目前,他是IEEE标准1413.1在选择和使用可靠性预测指南中的投票工作组成员(WGM),以及IEEE 1624(IEEE 1624),是组织和能力的IEEE标准。他曾是VLSID,Space和VDAT等会议的技术计划委员会成员。目前,他是
摘要:我们认为是一种新型的双通道耳语画廊模式(WGM)传感器,用于同时测量双向磁场和温度。分别称为二甲基硅氧烷和聚二甲基硅氧烷(PDMS)涂层的微丝烷(PDMS)涂层的微腔,分别称为通道1(CH1)和通道2(CH2)],将其集成到硅胶毛细管中,以促进Dual-ofter-nater-dual-oftry。与CH1和CH2相对应的谐振波长主要取决于磁诱导的折射率的变化以及分别在热诱导的参数(体积和折射率)的变化。MF浸润的毛细管启用双向磁场感测,最大敏感性分别为46 pm/mt和-3 pm/mt。PDMS涂层结构可以以79.7 pm/°C的最大灵敏度实现温度测量。除了温度响应之外,当前的工作具有双向磁性可调性的优势,该温度响应可预期在诸如矢量磁场和温度双参数传感的场中使用。
为此,为提高城市防洪减灾能力,2006年12月4~9日,WGH在菲律宾马尼拉召开的第39次大会上,主动审议了“城市洪涝灾害管理项目”的建议。2007年9月10~14日,在泰国曼谷召开的第二次台风委员会极端台风事件社会经济影响综合研讨会上,与会各方审议并讨论了中方提交的建议和路线图,一致认为加强TC成员城市洪涝灾害管理方面的合作与研究十分重要和必要。鉴于城市洪涝灾害管理涉及气象、水文、防灾备灾等多个方面,与会各方还认为该项目将是第一个将WGM、WGH、WGDPP和TRCG整合为一个项目的项目。项目名称拟定为“台风委员会区域城市洪涝风险管理”。在2010年1月25日至29日于新加坡举行的TC第42届会议上,委员会决定将UFRM项目升级为TC的跨领域项目。
为此,为提高城市洪涝灾害防治能力,WGH在2006年12月4-9日于菲律宾马尼拉召开的第39次大会上,主动审议了“城市洪涝灾害防治项目”提案。在2007年9月10-14日于泰国曼谷召开的TC第二次极端台风事件社会经济影响综合研讨会上,与会人员审议并讨论了中方提交的提案和路线图,一致认为TC成员加强城市洪涝灾害防治合作与研究十分重要和必要。考虑到城市洪涝灾害防治涉及气象、水文、防灾减灾等多个方面,与会人员还认为该项目将是第一个将WGM、WGH、WGDPP和TRCG整合为一个项目的项目。该项目的名称被建议为“台风委员会区域内的城市洪涝风险管理”。在 2010 年 1 月 25 日至 29 日于新加坡举行的 TC 第 42 届会议上,委员会决定将 UFRM 项目升级为 TC 的跨领域项目。
波导和谐振器中的麦克斯韦方程可以通过有限元法 (FEM) 4,5 或其众多替代方法中的任何一种来求解。6–13 本文并未声称 FEM 作为建模工具具有卓越的效率或灵活性,尽管它的便利性和可访问性已在目前应用它的几个商业上成功的软件平台 14,15 中得到体现。无论使用哪种方法,完整表示麦克斯韦方程(以便同时求解所有三个场分量)所需的编码/配置工作量都可能很大,并且已被各种商业软件应用程序或附加模块所吸收。13–15 然而,据作者所知,没有这样的应用程序可以直接配置为利用圆形 WGM 已知的方位角依赖性,即。exp ( ± i Mφ ) ,其中 M(≥ 0 的整数)是模式的方位角模式阶数,φ 是方位角坐标。因此,没有侵入式黑客攻击,没有人能够实现从 3D 到 2D 的计算优势问题简化。流行的 MAFIA/CST 包 13 基于“有限积分法”,16 就是一个很好的例子; 17 就数值效率而言,最好的办法是模拟径向电壁和磁壁之间的“楔形”[在方位角域 Δ φ = π/ (2 M ) 宽]。18