概述了实现交通部通知的 RPO 目标的措施。根据交通部规定的指导方针,并考虑到许可证持有者预计的发电量和/或从可再生能源购买的电量,委员会必须指定 2024-25 财年至 2029-30 财年期间的 RPO 轨迹。考虑到 KSEB 有限公司提交的预测,我们观察到喀拉拉邦的风能供应与印度许多多风的邦相比较低,这使得为各个可再生能源类别制定具体轨迹具有挑战性。但同时也要注意的是,可以通过以有竞争力的价格从该国其他地区的风能可再生能源购买电力来实现 WPO。因此,有人提议,除水力发电 (HPO) 和风能 (WPO) 外,所有其他形式的可再生能源,包括太阳能,都可以归类为“其他可再生能源”义务。
第二,在入门完成后,可以分析该系统以更好地了解有关贝斯的安全性,性能和耐力可能引起的担忧。这些相同的见解可用于提高系统在将来的操作中的性能。该计划的关键目的之一是验证Powerup关于安全性提示的提示,以防止WPO BESS系统中的热失控,并验证围绕安全性和寿命的电池制造商提出的索赔。简而言之,NYPA希望排除由根本原因Insight®能够识别的根源可能导致的安全性甚至性能问题。
ABCFP BC森林专业人员AMU评估单位AOI领域的ABCFP协会BCWS不列颠哥伦比亚省野火服务Bec Biogeoclipic CI关键基础设施CLWRR CROWR CROWN LAND LAND FIRE FIRES CORIE CRI CRI CRI CRI CRI CRI CRI CRI CRI CRI CRI CRI CRI CRI CRI CORILINIGY CRILINIGY COMPLITITY RESITITY COMPORIY COMPORIANT Enhancement Society of British Columbia FMP Fire Management Plan FMU Fuel Management Unit FPBC Forest Professionals BC FRPA Forest & Range Practices Act FTU Fuel Treatment Unit GDB Geodatabase GIS Geographic Information Systems HQ Headquarters HVRA Hazard, Risk, and Vulnerability Analysis ISI Initial Spread Index KMZ Keyhole Markup Language, Zipped MOF Ministry of Forests MRB Mountain Resorts Branch NP Non-productive PSTA省战略威胁分析RSWAP资源战略野火分配协议SPU结构保护单位UBCM不列颠哥伦比亚省的UBCM Union of Insipaliation wmu Wildfire管理单位WPO野火预防官员WRR WIRD FIRR WIRR WIRDFIRE WIRD WIRDFIRE WIRD WIRDFIRE WIRD WIRD FRRU WIRDRU WIRD FRU WIRDFIRE野生火灾风险降低Wuii Wirdland Fultland Furban界面
However, [ 8 ] observed that the fixed point obtained in the above Theorem 1.2 is not necessarily unique. Hence, a robust version of the results in [ 7 ] is provided therein. For some extensions of the idea of interpolative contractions in fixed point theory, we refer to [ 9 , 10 ] and the references therein. Following Petruşel and Rus [ 11 ], a self-mapping T of a metric space ( X, d ) is said to be a Picard operator (abbr., PO ) if T has a unique fixed point x ∗ and lim n →∞ T n x = x ∗ for all x ∈ X and T is said to be a weakly Picard operator (abbr. WPO ) if the sequence { T n x } n ∈ N converges, for all x ∈ X and the limit (which may depend on x ) is a fixed point of T . Jachymski [ 12 ] introduced the notion of contraction in metric space endowed with a graph G . Accordingly, let ( X, d ) be a metric space and let ∆ denote the diagonal of the Cartesian product X × X . Consider a directed graph G such that the set V ( G ) of its vertices coincides with X , and the set E ( G ) of its edges contains all loops, i.e., E ( G ) ⊇ ∆ . It is assumed that G has no parallel edges, so G can be identified with the pair ( V ( G ) , E ( G )) . Moreover, G may be treated as a weighted graph (see [ [ 13 ], p. 376]) by assigning to each edge the distance between its vertices. Denote by G − 1 , the conversion of a graph G , i.e., the graph obtained from G by reversing the direction of edges. Therefore,