摘要。城市地区的运输正在通过各种车辆进行转变,而电子驾驶员的增长最快。尽管他们很受欢迎,但电子示威者仍面临不兼容的充电器等问题,尤其是租赁服务问题。无线充电是通过无需用户干预的电池充电而作为解决方案的。本文重点介绍了针对电子弹药机的磁性充电器的设计和开发。这项研究详细介绍了恒定电流恒定电压(CC-CV)电荷的线圈拓扑,间隙定义和优化控制。目前的关键贡献是对这些因素的综合考虑以及车辆的材料和结构,以精确设计和实施。车辆的尺寸显着限制了线圈设计。因此,在过去,使用ANSYS MAXWELL进行了详细的分析,以确定实际电子弹药机中主要和次要线圈的最佳位置。此分析导致了线圈几何形状的最佳设计,从而最大程度地减少了成本。拟议的系统已通过真实的原型进行了验证,并结合了CC-CV控制,以确保为各种电池状态提供安全充电,并适用于广泛的E型驾驶员,从而增强了此类充电器在公共装置中的可用性。
摘要:植物charcol的作用是促进植物中更健康,更急剧的生长。因此,碳循环主要体现在绿色植物中,从空气中吸收二氧化碳,从而通过光合作用将其转化为葡萄糖,同时释放了生物圈中的氧气。然而,人工碳固定是在研究中通过时空尺度转换的直接或间接人工去除大气二氧化碳。本文回顾了碳循环中植物来源碳的流动模式和机制。试图通过碳循环中的多种机制来解释碳从一个储层移动到另一个储层。在研究中预计对碳峰的生物周期过程和碳中和碳中和的研究提供了参考意义。
高频无线电力传输技术特刊 无线电力传输 (WPT) 技术在众多新兴应用中越来越重要,包括交通电气化、电网、消费电子、医疗和太空。其非接触性质使其在高温、水下、地下和外层空间等具有挑战性的环境条件下具有优势。当前 WPT 系统的性能与开关频率密切相关,开关频率是功率容量、功率密度和效率的关键决定因素。随着宽带隙和超宽带隙器件 (WBG 和 UWBG) 的快速发展,最新的半导体能够在高功率水平下实现高开关频率,从而为 WPT 系统提供能量。此外,大多数关于高频 WPT 的单独报告都没有考虑如何在批量生产中制造谐振器,而单个谐振器是针对测试进行调整的,这不适合工业批量生产。本期特刊积极征集针对广泛功率水平范围内高频 WPT 技术的前沿研究贡献。通过展示最新进展,我们旨在突破当前限制当代 WPT 系统频率和功率水平的界限。我们邀请研究人员为此做出贡献,并促进这一充满活力的领域的进一步创新。
在许多领域的摘要,包括消费电子,医疗设备和汽车行业,无线电力传输(WPT)已成为一种革命性的技术。这项工作研究了无线功率传输(WPT)的基本原理,将其分类为近场和远场技术,并分析其在无物理连接的设备提供电源方面的用途。该分析对WPT在消费电子,医疗行业和电动汽车中的使用进行了评估,强调了该技术改变这些领域的潜力。此外,该研究还讨论了与效率,安全性和法规合规性有关的障碍,这些障碍阻碍了广泛使用WPT。最后,研究了无线电力传输(WPT)的未来前景,重点是开发可能增强其经济可行性并纳入常见应用的技术。关键字:无线电源传输,近场方法,远场方法,消费电子设备,医疗设备。
摘要无线电力传输(WPT)技术的最新进展为消费者和行业提供了更方便,高效和智能的电动汽车(EV)和智能设备(SDS)(例如智能手机,无人机,机器人和物联网)的收费。WPT已被采用,以免手工频繁地进出充电。仅凭重型电池就无法解决所有移动物体的饥饿能量问题,最终应该为此充电。在本教程中,首先简要介绍了包括电感功率传递(IPT)在内的WPT的基本原理,并解释了主要的WPT理论,例如耦合线圈模型,Gyrator电路模型,磁性镜像模型和一般统一的动态词曲模型。电动汽车的WPT进展得到了广泛的解释,它们分类为固定的电动汽车(SCEV)和道路驱动电动汽车(RPEV)。SCEV由于便利性和安全性而变得越来越吸引人。此外,由于电动汽车市场份额和可再生能源的市场份额迅速增加,电动汽车和网格的互操作性变得非常重要。电动汽车不再是简单的能源消费者,而是电网的能源提供者。WPT是一种有前途的解决方案,可以在停放时自动将电动汽车与网格连接。这是SCEV作为可互操作系统的灵活手段的潜在贡献。详细解决了线圈设计,大容忍度充电,补偿电路和异物检测(FOD)问题。也总结了全球技术发展的最新进展。rpevs没有严重的电池问题,例如大,重,昂贵且昂贵的电池组以及较长的充电时间,因为它们在移动时直接从道路上获得电源。通过创新的半导体开关,更好的线圈设计,巷道构造技术和更高的操作频率的优点,已提高了WPTSS的功率转移能力,效率,电磁场(EMF),气隙,大小,重量和成本。引入了WPT的最新进展。SD的WPT中的进步被解释了,根据操作环境,它们彼此之间的不同。智能手机是WPT中最成功的应用程序,现在正在不断发展,以获得太空中的更多收费自由。由于分布式和物联网的多种性质,WPT的广泛领域非常具有挑战性。各种动力水平和耐力时间的各种无人机和机器人需要具有足够快速的充电速度,并具有位置自由度。最近的技术发展将解释。解决了WPT问题的未来,其中包括可互操作的无线电动汽车,更长的距离IPT,3D无线充电器和合成的磁场聚焦(SMF)。
摘要 —辐射无线电力传输 (WPT) 带来了无需布线基础设施即可以经济高效的方式为无线设备充电的可能性。因此,作为 6G 实现的万物互联 (IoE) 愿景的一部分,它有望在有限电池通信设备的部署中发挥关键作用。到目前为止,辐射 WPT 技术主要是在假设设备位于功率辐射天线的远场区域的情况下进行研究和设计的,这导致能量传输效率相对较低。然而,随着 6G 系统向毫米波频率的过渡,再加上大型天线的使用,未来的 WPT 设备很可能在辐射近场 (菲涅尔) 区域运行。在本文中,我们概述了辐射近场 WPT 带来的机遇和挑战。具体来说,我们讨论了在近场辐射条件下实现波束聚焦的可能性,并强调了其对未来 IoE 网络中 WPT 的可能影响。此外,我们概述了这种新兴范式带来的一些设计挑战和研究方向,包括其与无线通信的同时运行、辐射波形考虑、硬件方面以及与典型天线架构的运行。
摘要:无线充电是一种使用电磁场通过电磁诱导传输能量的一种充电方法。通过相互诱导的过程在设备(发射器和接收器)之间传递能量。来自太阳能的功率作为输入发射器电感线圈的输入,接收器电感线圈接收电源并将其转换为电流以给电池充电。太阳能电池板将太阳能转换为电力。他们使用光电效应的概念,当光落在太阳能电池板上时电子的发射。太阳能电池板由硅细胞组成,硅具有原子编号14。当光落在硅细胞上时,硅的最外部电子即两个电子设置为运动。这引发了电流。硅具有两种不同的细胞结构:单晶和多晶单晶太阳能电池板是由一个大硅块制造的,并以硅晶片格式制成。多晶太阳能电池也是硅细胞,它们是通过将多个硅晶体融合在一起而产生的。使用吸引人的回响的无线电力传输(WPT)是创新,它可能使人免于刺激性的电线。的确,WPT具有类似的基本假设,该假设刚刚创建了30年的归纳功率交换一词。最近,WPT创新在控制水平上正在迅速增长。使WPT对固定和动态充电情况的电动汽车(EV)充电应用非常有用。该项目调查了WPT中远程充电的进步。通过在电动汽车中呈现WPT,充电系统可以有效缓解。电池创新在电动汽车的大众市场入口中再也没有相关。信任的是,专家可以得到前沿成就的支持,并像EV的扩展一样推动WPT的进一步改进。
在包括航空摄影,军队和运输等各种行业中使用。由于电池寿命较低,充电可能很困难。一个很好的无人机解决方案被认为是无线充电。在这项研究中,我们建议使用电感耦合的无线电力传输系统(WPT),并检查了电感耦合的功率效率。WPT中都包含位于无人机底部和带有感应线圈阵列的充电站的便携式能量接收装置。此外,使用WPT等效电路检查功率效率,并开发了电池的原型模型与四轮驱动器的测试功率效率。船上的结果是充电电路设计的贡献,其电池组充电了,并且非常轻的组件会大大降低尺寸和重量。充电功率转换效率已在最大值中实现了83.76%。
抽象 - 无处不在的移动设备的扩散使无线功率传输(WPT)成为非常重要的研究领域。在我们的世界中充电这些巨大设备的灵活性和成本效益,而无需物理与任何电气端口连接在一起,尤其是当用户不愿意这样做时,它是WPT非常有吸引力的特征。传统的手段为这些移动设备的电池充电是有线的,这总是意味着通过电缆与电源连接到电源。电力无线电源无线电源通过电感耦合或电极之间的电容耦合产生的电感耦合产生的磁场在短距离内通过空气界面转移,后来由天线用于利用。本文对现有的无线电力传输技术,操作原则,应用原理以及在这一新兴技术领域进行未来研究的机会进行了详细审查。但是,WPT有一些缺点,但它是一种破坏性的技术,具有彻底改变移动无线系统,物联网和其他未来技术的动态的能力。
摘要 — 无线电力传输 (WPT) 是电动汽车 (EV) 轻松充电技术的突破之一。人们提出并实施了不同类型的无线充电器拓扑结构,以满足各种约束,如电力传输效率、无线传输距离和错位公差。然而,对于电动自行车和电动滑板车等中低功率电动汽车的非接触式充电,耦合分离和传输效率仍未得到充分开发。为了在容易出现错位问题的车辆中实现远距离 WPT,使用串联 (SS) 补偿 WPT。传统的 SS 补偿 WPT 使用电压馈送转换器进行电力转换。但这些拓扑结构的组合允许系统中的反向电流流动,这将影响源的传输效率和寿命。为了防止这种情况,可以使用反向阻塞二极管或电流馈送转换器。虽然反向电流问题可以解决,但这些方法似乎进一步降低了电力传输效率。本文试图优化基于电流馈电转换器的 SS-WPT,以实现比传统设计更高的耦合分离、更高的电力传输效率和更高的错位容差。为实现此目的,对电流馈电转换器的输入电感器和 SS-WPT 的初级线圈进行了调整,而不会影响磁共振条件。在耦合分离为 200 毫米时,传输效率为 94%,比传统的基于电压源逆变器的可再生能源供电的 SS-WPT 充电效率高出 20%。在原型设计中验证了该概念后,通过在实时电动自行车中对其进行测试来验证结果。