今天,在拉斯维加斯举行的全国商务航空大会和展览会 (NBAA-BACE) 上,皮拉图斯公司推出了业内最先进、用途最广泛的单引擎涡桨飞机 – PC-12 NGX。全新的 PC-12 NGX 采用了改进的发动机、更智能的航空电子设备以及经过完全重新设计的带有更大窗户的机舱,使第三代 PC-12 机身成为迄今为止最先进的单引擎涡桨飞机。新款 PC-12 NGX 汲取了全球 PC-12 机队由 1,700 多架飞机组成的经验和超过 700 万小时的飞行时间,再加上皮拉图斯公司业界领先的支持,为涡桨飞机市场带来了最新技术。经过验证的数字控制发动机技术单引擎涡桨飞机的运行需要经过验证的动力装置:新款 PC-12 NGX 的核心是普惠加拿大公司的 PT6E-67XP 涡桨发动机。这款改进的发动机采用电子螺旋桨和发动机控制系统,包括全权限数字发动机控制 (FADEC) - 这是该细分市场的全球首创。此外,新的螺旋桨低速模式可显著降低客舱噪音,为乘客提供极大的舒适度。新的涡轮螺旋桨发动机使 PC-12 NGX 的最大巡航速度达到 290 KTAS(537 公里/小时)。PC-12 NGX 还增加了一些高级功能,例如无 Prist® 燃料操作。智能驾驶舱环境 PC-12 NGX 为飞行员提供了一系列新功能:霍尼韦尔的高级驾驶舱环境 (ACE™) 系统灵感源自 PC-24,可提供增强的航空电子设备。皮拉图斯在该细分市场中的另一个首创是结合
今天,在拉斯维加斯举行的全国商务航空大会及展览会 (NBAA-BACE) 上,皮拉图斯公司推出了业界最先进、用途最广泛的单引擎涡轮螺旋桨飞机 - PC-12 NGX。全新的 PC-12 NGX 采用了改进的发动机、更智能的航空电子设备和完全重新设计的机舱,机窗更大,使第三代 PC-12 机身成为有史以来最先进的单引擎涡轮螺旋桨飞机。凭借全球 PC-12 机队超过 1,700 架飞机和超过 700 万飞行小时的经验以及皮拉图斯行业领先的支持,新款 PC-12 NGX 将最新技术带入涡轮螺旋桨飞机市场。经过验证的数字控制发动机技术 单引擎涡轮螺旋桨发动机运行需要经过验证的动力装置:新型 PC-12 NGX 的核心是加拿大普惠公司的 PT6E-67XP 涡轮螺旋桨发动机。这款改进的发动机采用电子螺旋桨和发动机控制系统,包括全权限数字发动机控制 (FADEC) - 这是该细分市场的全球首创。此外,新的螺旋桨低速模式可显著降低客舱噪音,为乘客带来极大的舒适感。新型涡轮螺旋桨发动机使 PC-12 NGX 的最大巡航速度达到 290 KTAS(537 公里/小时)。PC-12 NGX 还增加了一些高级功能,例如无 Prist® 燃料运行。智能驾驶舱环境 PC-12 NGX 为飞行员提供了一系列新功能:霍尼韦尔的先进驾驶舱环境 (ACE™) 系统受到 PC-24 的启发,可提供增强的航空电子设备。皮拉图斯在该领域又创先河,结合了
洋葱路由是在线匿名通信最广泛使用的方法。这个想法是,爱丽丝将她的信息包裹在加密层中,形成了“洋葱”,并通过一系列中介机构将其路由。每个中介工作的工作是解密(“ peel”)洋葱获得下一步发送的说明所收到的洋葱。直觉是,到鲍勃(Bob)到达鲍勃(Bob)时,洋葱将与许多其他洋葱混合在一起,即使对于观察整个网络并控制参与者的一小部分的对手来说,它的起源也很难追踪,可能包括鲍勃(Bob)。尽管在实践中广泛使用,但直到现在,在有活跃的对手存在下观察所有网络流量并控制参与者的持续分数的活动对手的情况下,尚无洋葱路由协议,(a)匿名; (b)容忍故障,即使掉落了一些洋葱,该协议仍然会提供其余的; (c)合理的沟通和计算复杂性作为安全参数和参与者数量的函数。在本文中,我们提供了符合这些目标的第一个洋葱路由协议:我们的协议(a)实现匿名; (b)耐受洋葱的多组载体(在安全参数中),其余的洋葱数量; (c)需要每回合的弹药数量和每回合发送的洋葱数量。我们还表明,要通过洋葱路由以容忍性的方式实现匿名,这是必不可少的。独立的兴趣,我们的分析介绍了洋葱路由的两个新的安全属性 - 混合和均衡 - 我们共同表明它们共同表示匿名。
今天,在拉斯维加斯举行的全国商务航空大会和展览会 (NBAA-BACE) 上,皮拉图斯公司推出了业内最先进、用途最广泛的单引擎涡桨飞机 – PC-12 NGX。全新的 PC-12 NGX 采用了改进的发动机、更智能的航空电子设备以及经过完全重新设计的带有更大窗户的机舱,使第三代 PC-12 机身成为迄今为止最先进的单引擎涡桨飞机。新款 PC-12 NGX 汲取了全球 PC-12 机队由 1,700 多架飞机组成的经验和超过 700 万小时的飞行时间,再加上皮拉图斯公司业界领先的支持,为涡桨飞机市场带来了最新技术。经过验证的数字控制发动机技术单引擎涡桨飞机的运行需要经过验证的动力装置:新款 PC-12 NGX 的核心是普惠加拿大公司的 PT6E-67XP 涡桨发动机。这款改进的发动机采用电子螺旋桨和发动机控制系统,包括全权限数字发动机控制 (FADEC) - 这是该细分市场的全球首创。此外,新的螺旋桨低速模式可显著降低客舱噪音,为乘客提供极大的舒适度。新的涡轮螺旋桨发动机使 PC-12 NGX 的最大巡航速度达到 290 KTAS(537 公里/小时)。PC-12 NGX 还增加了一些高级功能,例如无 Prist® 燃料操作。智能驾驶舱环境 PC-12 NGX 为飞行员提供了一系列新功能:霍尼韦尔的高级驾驶舱环境 (ACE™) 系统灵感源自 PC-24,可提供增强的航空电子设备。皮拉图斯在该细分市场中的另一个首创是结合
你的确是对的!但目前计算机进行的近似计算遵循了完全不同的路径:在几分之一秒内执行数百万次数学运算,以获得有时可能被标记为足够有时可能不足够的翻译。事实证明,它们恰好足够的次数百分比在过去几年中急剧上升。但是,从历史上看,人工神经网络被设计为自然神经网络(例如我们的大脑)如何工作的简化模型,其中进行的认知过程也是分布式神经计算过程的结果,这些过程与上面提到的数学运算并没有太大不同。本章将教你 NMT 技术的关键要素。我们将首先指出人类大脑如何进行翻译与 NMT 系统如何进行翻译之间的联系。这将有助于我们介绍全面了解机器学习和人工神经网络原理所需的基本概念,这构成了 NMT 的两个基石。之后,我们将讨论非上下文词嵌入的基本原理,这是一种具有许多有趣属性的词的计算机化表示,当通过一种称为注意力的机制组合时,将产生所谓的上下文词嵌入,这是实现 NMT 的关键因素。所有这些要素将使我们能够全面展示两种最常用的 NMT 模型(即 Transformer 和循环模型)的内部工作原理。本章最后介绍了一系列次要主题,这些主题将提高您对这些系统如何在幕后运行的了解。
工作人员对原始法案的公开证词总结:委员会建议的法案版本与所听到的版本不同。赞成:这是一项遗留法案,在参议院第一次审议时就通过了。刑事法律制度和问责制的基础是人们了解他们正在做的事情。八岁的孩子无法完全理解。身处这个系统会影响一个人的生活轨迹,一旦他们进入这个系统,他们很可能会继续与这个系统接触。应该制定有意识的政策来保护我们的年轻人。伤害其他孩子的孩子也会受到伤害,我们需要帮助他们。没有人愿意叫执法人员来抓他们的孩子,应该有更好的选择。这个系统应该与科学保持一致。决策不应该基于最坏的情况。孩子们试图从别人的角度看问题,但他们非常关注自身利益和同伴的接受。直到 13 岁及以上,他们才真正开始形成道德准则。年幼的孩子没有能力理解所有指控和刑事法律程序的含义。我们需要把孩子当孩子对待。将孩子定罪会让他们相信自己是坏人,并鼓励他们做坏事。如果我们不照顾孩子,我们这个社会会是什么样子?我们必须调查为什么这个系统热衷于投入数百万美元来惩罚我们的孩子,而不是投资和培养他们的福祉。逮捕这些孩子对他们没有帮助,系统之外还有更有效的干预措施。年轻人
图1:热点模拟方法。我们通过将其应用于Musashi-1的RRM1域来证明这种方法。(a)MSI1 / RNA复合物的结构。RNA(棍棒)围绕蛋白质包裹(球形)。将两个相邻的碱基A106和G107(洋红色)埋在蛋白质表面的浅口袋中。(b)通过收集涉及分子间氢键的深埋碱(洋红色)和原子(以黄色显示的供体,绿色供体显示),从复合物中的RNA产生了相互作用图。(c)相互作用图的组成部分聚集在空间中,不参与氢键的原子将其恢复为碳原子。这会产生“热点药理”。 (d)通过与荧光标记的RNA竞争确定的带有单个无碱性位点与原始同源RNA序列的RNA之间结合自由能的差异。正值表明当给定基碱被无碱位点替换时,结合减少,表明A106和G107对这种相互作用的结合亲和力的贡献大于附近的其他碱基。(e)热点药效团是基于配体筛选的模板,寻找可以模仿药效团的三维特征的化合物。屏幕导致化合物R12的鉴定,该复合R12模拟了环的几何形状,并提供了四个所需的氢键组中的三个。(F)R12与荧光素标记的RNA竞争MSI1结合,如通过荧光极化测定所观察到的。这些数据不允许确定结合亲和力。(g)热点药效团回到蛋白质结构上的叠加说明了应由理想配体捕获的相互作用:针对三个芳族侧级堆叠,以及四个分子间氢键。(H)R12在蛋白质结构上的叠加表明,该化合物有望保留芳香族堆积,并概括了四个氢键中的三个。
在最近的应用中,MSA的构建从有趣的查询顺序开始。该过程涉及搜索数据库以查找类似于查询的序列并将其对齐。DNA/RNA测序技术的最新进展扩大了Pub-LIC数据库,使能够产生具有高序列多样性的MSA [13,14]。通常认为这种MSA提供了更丰富的进化和协调性的见解,因此它们可以提高使用模型来下游任务的模型的有效性[9]。但是,由于MSA可以包含冗余序列,因此序列的数量本身可能不是其多样性的准确反映。“有效序列的数量”的概念,NEFF解决了这种冗余,并评估了MSA的质量。较高的NEFF值通常表明MSA更多样化和信息丰富,从而导致预测接触图和蛋白质或RNA分子的三级结构的精度[15,16]。例如,当NEFF值低于30 [5]时,Alphafold的准确性大大下降。此外,对于使用RNA的MSA作为输入的RNA结构预测模型(例如Trrosettarna),预测准确性与NEFF [7]相关,而对于高质量的MSA,这些模型可以胜过其他方法[17]。我们介绍了Neffy,这是一种快速而专用的独立工具,用于NEFF计算。neffy具有唯一装备的分析MSA,并在蛋白质和核酸序列的多种MSA格式中计算NEFF。它集成了NEFF工具(请参阅表1)中的所有功能,并提供一组新功能。neffy是在C ++中开发的,以实现最佳性能,并作为包装C ++可执行文件的Python库提供。这种方法可以使无缝集成到基于Python的工作流程中,从而简化了更广泛的受众的使用,同时保持效率。
•全面,重点覆盖范围:十五章以及介绍性部分提供了有关牙科办公室和实验室中使用的牙科材料的详细信息,以及与牙医,牙科卫生员和牙科助理的日常实践有关的所有材料。•尖端内容:讨论了牙科实践中使用的最新材料,包括在审美牙科,数字牙科和预防牙科中使用的材料,以及实验室实践中的新高级技术。•艺术计划:超过500多个全彩色插图和照片,可以自由地补充文本描述,以帮助学生学会认识到许多类型的牙科材料之间的差异,并彻底填写其适当的临床操作。数十个口腔内照片显示了在许多情况下如何使用材料,逐步使用的材料。•一致的呈现:每种材料呈现始于对材料的性质和用途的研究,然后再继续进行牙科的特定操作和应用,提供了一个逻辑框架,以在材料之间进行比较。•回顾问题:每章以20至30个自我测试问题结尾,这些问题是在线讲师的材料中提供的答案,作为学生的学习和评估工具。•快速审查框:每章用简短的叙述结束,总结了内容,以回顾关键概念并帮助学生评估他们准备进步到下一个主题的准备。•笔记框:散布在整个文本中,这些注释突出了关键点和重要的术语,以帮助学生构建临床能力所需的基本信息。•摘要表和框:章节在整个文本中列举框和表中的概念和过程,以易于阅读文本讨论的摘要,以进行参考和研究。•词汇资源:在本章中的最初文本范围内进行粗体,并在书本中定义
髓磷脂是一种由中枢神经系统(CNS)中的少突胶质细胞的延伸质膜形成的多层结构(Aggarwal等,2011; Baumann and Pham-Dinh,2001; Stadelmann等,2019)。它会围绕轴突充分包裹,从而产生主要由脂质(70-85%)和蛋白质(15–30%)组成的鞘,它们共同提供电绝缘。脂质成分,包括胆固醇,磷脂和糖脂,使髓磷脂具有绝缘性,而髓磷脂碱性蛋白(MBP)和蛋白质脂质蛋白(PLP)(PLP)(PLP)(PLP)稳定并稳定并压缩层。PLP还将胆固醇分流到髓磷酸室(Werner等,2013)。髓鞘鞘分为节间,它们是沿轴突髓磷脂紧密压实的区域。这些由富含电压门控离子通道的轴突的Ranvier的节点分开。这个结构性组织允许盐分传导,其中仅在节点上仅重新再生动作电位,同时降低了神经元活性的能量需求,从而显着提高了信号传播速度(Aggarwal等,2011; Baumann and Pham-Dinh,2001; Stadelmann et al。,2019年)。髓磷脂在确保沿轴突的快速有效信号传递来确保动作电位的精确同步方面起着关键作用。这种同步整合了各种兴奋性和抑制性输入,从而实现了神经元通信的准确时机。通过保持动作电位的速度和保真度,髓磷脂支持复杂的神经回路的协调,这对于适当的神经网络功能和过程(例如感觉知觉,运动控制和认知)至关重要。髓磷脂结构的小改变可以促进或破坏动作电位的同步,从而影响神经回路功能(Bonetto等,2021; Monje,2018; Xin and Chan,2020)。