储能装置中使用的电极材料在循环过程中会发生结构和化学变化,这会影响装置的长期稳定性。然而,这些变化发生在电极表面的背后现象仍不清楚。在这里,我们通过多方面的方法研究了二维 (2D) 超级电容器电极在循环过程中的演变。我们提出了一种新方法来监测循环二维二硫化钨 (WS 2 ) 基电极引起的应变,通过使用开尔文探针力显微镜 (KPFM) 绘制不同电化学循环间隔下的电极功函数。为了支持我们的研究,使用拉曼光谱评估了二维 WS 2 基电极在重复循环过程中的演变。结果表明,在循环过程中,由于电解质离子的嵌入/脱嵌,WS 2 层中会产生应变。结果,可用的电化学活性位点增加,从而导致电容增加。这种新方法能够了解电极随循环寿命的演变,并有望有利于开发更高效、更持久的储能设备。
摘要:二维(2D)半导体二进制二进制对下一代电子和光子设备的非凡希望。尽管存在这种潜力,但在2D二分法中存在缺陷的存在导致载体的迁移率和光致发光(PL),而理论预测明显不足。尽管缺陷钝化提供了潜在的解决方案,但其影响并不一致。这是由于缺乏对2D材料表面化学的化学理解。In this work, we uncover new binding chemistry using a sequence-specific chemical passivation (SSCP) protocol based on 2-furanmethanothiol (FSH) and bis(trifluoromethane) sulfonimide lithium salt (Li-TFSI), which demonstrates a synchronized 100-fold enhancement in both carrier mobility and PL in WS 2 monolayers.我们提出了一种由超快瞬态吸收光谱(TA),硬X射线光电学光谱镜(HAXPES)和密度功能理论(DFT)钙化支持的中性和带电硫空位(SV)的原子水平协同缺陷钝化机制。我们的结果为2D WS 2建立了一个新的半导体质量基准,为开发可持续2D半导体技术铺平了道路。■简介
免责声明:洛斯·阿拉莫斯国家实验室(Los Alamos National Laboratory)是一项平权行动/平等机会雇主,由Triad National Security,LLC经营美国国家能源部国家核安全管理局根据合同89233218CNA000001经营。通过批准本文,出版商认识到,美国政府保留了不判有限定的免版税许可,以出版或复制已发表的此捐款形式,或者允许其他人出于美国政府的目的。洛斯阿拉莫斯国家实验室要求出版商根据美国能源部主持的工作确定这篇文章。Los Alamos国家实验室强烈支持学术自由和研究人员发表权;但是,作为一个机构,实验室并未认可出版物的观点或保证其技术正确性。
摘要我们根据近红外光谱制度的芯片尺度集成光电探测器的实现和表征,基于在氮化硅硅硅硅基上的摩西2 /WS 2异缝的整合。这种配置在780 nm的波长(表明内部增益机制)下达到〜1 a w -1的高响应性,同时将暗电流抑制至〜50 pa的水平,与仅Mose 2的参考样本相比,降低了〜50 pa的水平。我们测量了暗电流的功率频谱密度低至〜1×10 - 12 a hz -0.5,从中,我们从中提取噪声等效功率(NEP)为〜1×10-12 - 12 W Hz -0.5。为了演示设备的实用性,我们将其用于表征与光电探测器相同芯片上的微林共振器的传输函数。能够在芯片上整合局部光电电视机并在近红外制度下操作具有高性能的设备,这将在光学通信,量子光子学,生物化学传感等的未来集成设备中发挥关键作用。
摘要:由于特性和维度的独特组合,研究了纳米级的各种应用,研究了过渡金属二分元。对于许多预期的应用,热传导起着重要作用。同时,这些材料通常包含相对较大的点缺陷。在这里,我们对内在和选择外部缺陷对MOS 2和WS 2单层的晶格导热率的影响进行系统分析。我们将Boltzmann传输理论与Green基于功能的T -Matrix方法相结合,以计算散射速率。缺陷配置的力常数是通过回归方法从密度功能理论计算获得的,这使我们能够以中等的计算成本采样相当大的缺陷,并系统地强制执行翻译和旋转声音总和规则。计算出的晶格导热率与MOS 2和WS 2的热传输和缺陷浓度的实验数据定量一致。至关重要的是,这表明在实验上观察到的晶格热导率的1/ t温度依赖性的强偏差可以通过点缺陷的存在来充分说明。我们进一步预测了固有缺陷的散射强度,以减少两种材料中两种材料中序列Vmo≈v2s => V 2S => v 2s> v s> s AD,而外部(ADATOM)缺陷的散射速率随着质量的增加而降低,以使li AD AD aD aD aD aD aD aD> k aD> k AD。与较早的工作相比,我们发现固有和外在的原子质都是相对较弱的散射体。我们将这种差异归因于翻译和旋转声音总规则的处理,如果不执行,则可能导致零频率限制的虚假贡献。
蓝色有机发光二极管(OLED)技术需要进一步的进步,而超荧光(HF)OLED已成为解决稳定性和颜色纯度问题的有希望的解决方案。影响HF-OLEDS性能的关键因素是Förster共振能量转移(FRET)。在这里,我们使用对比鲜明激活的延迟荧光(TADF)敏化剂研究了蓝色HF-OLED的FRET机制。我们证明,敏化剂的分子结构深刻影响了FRET效率,以螺旋罗连接的TADF Molecule Acrsa为例,TADF Molecule acrsa抑制了二面 - 角度的不均匀性和任何低能源构象异构体,这些构象异构体对末期发射极端发射极小。因此,可以将FRET效率优化至近100%。此外,我们演示了近乎理想的敏化剂的性质与理想的TADF发射器的分歧。与非HF设备相比,使用绿色敏化剂的蓝色HF-oleds具有外部量子效率的三倍(约30%)。这种新的理解为敏化剂设计打开了途径,表明绿色敏化器可以有效地泵送蓝色端子发射器,从而减少设备激素激素能量并改善蓝色OLED稳定性。
摘要在二维(2D)半导体制造过程中,侧向P-N连接的构建非常重要,而且具有挑战性。先前的研究表明,垂直P-N连接可以通过垂直堆叠2D材料来制备。但是,界面污染和较大面积的可扩展性是垂直堆叠技术难以克服的挑战。构建2D横向P-N同型结是解决这些问题的有效策略。在空间选择性p型掺杂2D半导体的掺杂有望构建侧面P-N均匀结构。在这项工作中,我们开发了一种低能离子植入系统,将植入能量降低至300 eV。低能植入可以形成浅植入深度,这更适合调节2D材料的电气和光学特性。因此,我们利用低能量离子植入将氮离子直接涂成几层WS 2,并成功实现了WS 2的精确调节,其电导率类型从N型转换为双极性甚至P型传导。此外,通过将其扩展到其他2D半导体(包括WSE 2,SNS 2和MOS 2)来证明该方法的普遍性。基于这种方法,横向WS 2 p-n同型被制造出来,具有显着的直径特征。还准备了基于P-N结的光电探测器,并准备了光伏效应,开路电压可以达到0.39V。这项工作为可控掺杂2D半导体提供了有效的方法。
MartÍnez-Merino, P.、Midgley, S. D.、MartÍn, E. I.、EstellÍ, P.、Alcántara, R.、Sánchez-Coronilla, A.、Grau-Crespo, R. ORCID:https://orcid.org/0000-0001-8845-1719 和 Navas, J. (2020) 用于聚光太阳能发电的新型基于 WS2 的纳米流体:性能表征和分子水平洞察。 ACS应用材料与界面,12(5).页5793-5804。 ISSN 1944-8244 doi: https://doi.org/10.1021/acsami.9b18868 可在 https://centaur.reading.ac.uk/88909/ 上获取
使用逻辑模型,已经确定了三个工作流。Worktream 1(WS1)由三个步骤组成,将告知模型的“输入”。首先,定性访谈(n = 20)将与养老院工作人员进行,以确定向HF患者提供护理时的促进者和障碍。同时将进行范围审查,以综合当前护理院内HF干预措施的证据。最后一步将涉及50-70个主要利益相关者(例如护理人员,HF及其家人及其家人和朋友)的Delphi研究,以确定与HF相关的关键教育优先级。使用来自WS1的数据,将在Workstream 2(WS2)中与HF或HF或其护理人员,HF专业人员和护理人员的工作人员一起在Workstream 2(WS2)中共同设计数字干预措施,以提高HF的自我知识和自我效能。最后,Workstream 3(WS3)将涉及数字干预的混合方法测试。结果包括有关HF和
摘要:由于特性和维度的独特组合,研究了纳米级的各种应用,研究了过渡金属二分元。对于许多预期的应用,热传导起着重要作用。同时,这些材料通常包含相对较大的点缺陷。在这里,我们对内在和选择外部缺陷对MOS 2和WS 2单层的晶格导热率的影响进行系统分析。我们将Boltzmann传输理论与Green基于功能的T -Matrix方法相结合,以计算散射速率。缺陷配置的力常数是通过回归方法从密度功能理论计算获得的,这使我们能够以中等的计算成本采样相当大的缺陷,并系统地强制执行翻译和旋转声音总和规则。计算出的晶格导热率与MOS 2和WS 2的热传输和缺陷浓度的实验数据定量一致。至关重要的是,这表明在实验上观察到的晶格热导率的1/ t温度依赖性的强偏差可以通过点缺陷的存在来充分说明。我们进一步预测了固有缺陷的散射强度,以减少两种材料中两种材料中序列Vmo≈v2s => V 2S => v 2s> v s> s AD,而外部(ADATOM)缺陷的散射速率随着质量的增加而降低,以使li AD AD aD aD aD aD aD aD> k aD> k AD。与较早的工作相比,我们发现固有和外在的原子质都是相对较弱的散射体。我们将这种差异归因于翻译和旋转声音总规则的处理,如果不执行,则可能导致零频率限制的虚假贡献。
