6. Matthias Wurdack*、Tinghe Yun、Eliezer Estrecho、Nitu Syed、Semonti Bhattacharyya、Maciej Pieczarka、Ali Zavabeti、Shao-Yu Chen、Benedict Haas、Johannes Mueller、Qiaoliang Bao、Christian Schneider、Yuerui Lu、Michael S Fuhrer、Andrew G Truscott、Torben Daeneke*、Elena A. Ostrovskaya * 超薄 Ga2O3 玻璃:单层 WS2 的大规模钝化和保护材料。先进材料2021,33,
麦克风安装在扬声器前面,这样声音就沿着它们的圆柱对称轴入射。扬声器由一系列频率的正弦信号驱动,以产生大约 74 dB 的声压级,麦克风输出在 Norsonics 830 实时分析仪上测量。在测量过程中,麦克风被交换以消除声场或前置放大器和分析仪输入通道增益的任何差异。应用了校正来解释 WSI 麦克风和 WS2 麦克风之间前置放大器的不同电负载。使用正弦信号而不是粉红噪声来避免由于两个麦克风在目标频率下的频率响应非常不同而导致的任何错误。
DEGA功能和功率增强功能以及临时控制功能,并且是链条的理想尺寸。功率增强功能有助于确保润滑剂中的摩擦修饰剂(Moly / WS2)颗粒通过润滑剂 /蜡完全分布。i具有上述2个,还有另一种超过1K的超声波,其脉冲和扫掠波的频率和高功率用于超声波,以确保通过摩擦修饰符的蜡完全分布。您不需要这样的水平(我正在提供专业的服务,使世界最快的比赛链制造世界最快),但只知道,从Aliexpress提供的60美元的超声波可能会(也许……)可以进行清洁,但在VS中有效地摇动wax pot On Good shake in Contake in Contareers for Contareers foreerers的效果,可以有效地有限地进行超声波润滑剂的能力。Øhttps://www.luxemed.com.au/products/gt-ultrasonic-
本文件旨在详细概述 CARBODIN 在项目第一年所开展的工作。D12.5 包括与演示者相关的 WS 可交付成果的可发布信息集合。本报告将包括构成该项目的三个区块的进展,因此它将由三部分组成,展示车身外壳区块(即 WS1、WS2、WS3 和 WS4)、车门区块(WS5、WS6 和 WS7)和内饰区块(WS8、WS9、WS10 和 WS11)的项目进展。由于项目延迟,本报告包括 6 个可交付成果:D2.1、D5.1、D6.1、D8.2、D10.1、D11.1。其余交付成果将包含在本报告的第二个版本 D12.6“第 2 年 CARBODIN 演示者报告”中。
学习者资料(描述班级的组成,包括通识教育,英语学习者(ELL)和杰出的学生教育(ESE)学生。列出了学习者的独特特征,例如资格,能力级别等)在上述信息的段落形式中包括一个特定于您正在实施课程的学生的叙述。佛罗里达州标准和/或下一代阳光州标准(请访问http://www.floridastandards.org/standards/flstandards/flstandardsearch.aspx,以选择本课程的适当标准。)WIDA标准(请访问https://www.wida .us/get.aspx?id = 540;然后,请参阅第3页)选择所有适用的☐WS1:在学校环境中出于社会和教学目的。☐ws2:语言艺术内容领域的学术成功所必需的信息,思想和概念。☐ws3:在数学内容领域的学术成功所必需的信息,思想和概念。☐WS4:科学内容领域的学术成功所必需的信息,思想和概念。☐WS5:社会研究内容领域中学术成功所必需的信息,思想和概念。
致谢 2 主席致辞 4 菲律宾卫生与公众服务局简介 5 2023 年成就 12 从卫生部过渡到社会科学部 12 政策与治理 17 主题提名和优先排序活动 18 为政策制定提供参考的评估 20 地方和国际伙伴关系与合作 22 国际伙伴关系 22 地方伙伴关系 26 菲律宾卫生与公众服务局组织和参加的会议、讲习班、研讨会和大会 30 2023 年差距和挑战 44 前进之路 44 2023 年卫生与公众服务局部门预算 45 2024 年 HTA 部门预算 45 2024 年目标和工作流 46 WS1: HTA 治理:流程和方法 46 WS2: 2023 年一般轨道实施(针对第 2 周期优先主题) 47 WS3. 2024 年一般轨道开放 47 WS4. 评估周期 47 WS5. 研究议程(非评估) 49 WS6. 研究网络发展 49 WS7. 过渡相关事项 49 WS8.国际项目 50 附件 51 附件 A. 菲律宾 HTA 治理及其他已发布信息 51 附件 B. 评估摘要 53
•汽车应用:UC1专注于开发空气动力屏蔽,而UC2靶向备用轮子井,均旨在通过轻量级结构来提高车辆效率。此外,UC7还引入了用于储能应用的先进的H2存储系统,而UC8集中于用于结构健康监测(SHM)的多参数传感器(SHM),以增强车辆的寿命和安全性,UC9专注于设计用于使用金属涂料的自润滑金属零件(WS2/MOS2/MOS2/MOS2)和喷涂润滑的设计。•水处理创新:UC3和UC4应对至关重要的环境挑战,利用基于石墨烯的材料在水脱盐和油/水分离中进行纳米滤过。这些解决方案旨在提高水处理过程的效率,促进资源保护和可持续性。•航空航天的进步:UC5和UC6将石墨烯增强的材料带到航空航天中,重点关注用于尾随边缘组件的超音速飞机和闪电罢工保护(LSP)系统的前沿。这些创新有望提高耐用性并降低材料磨损,从而延长航空航天组件的生命周期。•能源部门解决方案:Giance还使用UC10(H2生成的催化剂)和UC11(基于吸附剂的H2存储系统)探索氢(H2)技术。这些创新支持欧盟的氢策略,为各种工业应用提供了更清洁的能源解决方案。
1。Andrei,E。Y.等。 Moiré材料的奇迹。 nat Rev Mater 6,201–206(2021)。 2。 Cao,Y。等。 在魔术角石墨烯超级晶格中半填充时相关的绝缘体行为。 自然556,80–84(2018)。 3。 Tang,Y。等。 在WSE2/WS2Moiré超级晶格中模拟Hubbard模型物理。 自然579,353–358(2020)。 4。 Regan,E。C。等。 Mott和Wigner Crystal态在WSE 2 /WS 2Moiré超级晶格中。 自然579,359–363(2020)。 5。 Wang,L。等。 在扭曲的双层过渡金属二分法中相关的电子相。 nat Mater 19,861–866(2020)。 6。 Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Andrei,E。Y.等。Moiré材料的奇迹。nat Rev Mater 6,201–206(2021)。2。Cao,Y。等。 在魔术角石墨烯超级晶格中半填充时相关的绝缘体行为。 自然556,80–84(2018)。 3。 Tang,Y。等。 在WSE2/WS2Moiré超级晶格中模拟Hubbard模型物理。 自然579,353–358(2020)。 4。 Regan,E。C。等。 Mott和Wigner Crystal态在WSE 2 /WS 2Moiré超级晶格中。 自然579,359–363(2020)。 5。 Wang,L。等。 在扭曲的双层过渡金属二分法中相关的电子相。 nat Mater 19,861–866(2020)。 6。 Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Cao,Y。等。在魔术角石墨烯超级晶格中半填充时相关的绝缘体行为。自然556,80–84(2018)。3。Tang,Y。等。 在WSE2/WS2Moiré超级晶格中模拟Hubbard模型物理。 自然579,353–358(2020)。 4。 Regan,E。C。等。 Mott和Wigner Crystal态在WSE 2 /WS 2Moiré超级晶格中。 自然579,359–363(2020)。 5。 Wang,L。等。 在扭曲的双层过渡金属二分法中相关的电子相。 nat Mater 19,861–866(2020)。 6。 Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Tang,Y。等。在WSE2/WS2Moiré超级晶格中模拟Hubbard模型物理。自然579,353–358(2020)。4。Regan,E。C。等。 Mott和Wigner Crystal态在WSE 2 /WS 2Moiré超级晶格中。 自然579,359–363(2020)。 5。 Wang,L。等。 在扭曲的双层过渡金属二分法中相关的电子相。 nat Mater 19,861–866(2020)。 6。 Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Regan,E。C。等。Mott和Wigner Crystal态在WSE 2 /WS 2Moiré超级晶格中。自然579,359–363(2020)。5。Wang,L。等。 在扭曲的双层过渡金属二分法中相关的电子相。 nat Mater 19,861–866(2020)。 6。 Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Wang,L。等。在扭曲的双层过渡金属二分法中相关的电子相。nat Mater 19,861–866(2020)。6。Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Cao,Y。等。魔法石墨烯超级晶格中的非常规的超导性。自然556,43-50(2018)。7。lu,X。等。超导体,轨道磁铁和魔法双层石墨烯中的相关状态。自然574,653–657(2019)。8。Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Cai,J。等。扭曲的Mote2中分数量子异常圆度状态的签名。自然622,63-68(2023)。9。Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Park,H。等。观察分数量化的异常霍尔效应。自然622,74–79(2023)。10。Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Zeng,Y。等。MoiréMote2中分数Chern绝缘子的热力学证据。自然622,69–73(2023)。11。lu,Z。等。自然626,759–764(2024)。多层石墨烯中的分数量子异常霍尔效应。12。Xu,F。等。观察整数和分数量子异常大厅效应
1 无机和分析化学,2 制药,3 无机和分析化学,维沙卡帕特南,530003,印度。摘要:纳米材料的生产和应用研究已经开展多年。由于基本元素钼和另一种化学元素硫(氧族元素)的性质不同,它们具有各种吸引人的特性。尽管我们对二硫化钼纳米粒子的成核、发展和结构所涉及的过程以及其生物特性和催化活性背后的机制的理解取得了重大进展,但仍存在许多困难。纳米材料的进化有助于在纳米级改变材料的形状和结构,以实现所需的应用。为了区分半导体相和金属相,人们开发了准二维 (Q2D) 材料,例如石墨烯和 2D 蜂窝硅,以及层状过渡金属二硫属化物 (TMD),例如二硫化钼 (MoS 2 ) (WS2)。因为它在从块体转变为纳米级时能够表现出广泛的特性。其中,二硫化钼 (MoS 2 ) 是一种有趣的多功能材料。由于其 (1.9 eV) 直线带隙值,单片 MoS 2 无疑能够实现后硅电子学。在室温下,它具有高开/关电流比和大约 200 cm 2 (Vs -1 ) 的迁移率。MoS 2 的结构也是其两个特性的决定因素。它对气体传感很有用,因为它具有六边形结构,其中 S-Mo-S 原子层共价连接,相邻的 MoS 2 层之间有范德华连接。由于 MoS 2 具有良好的特性,因此具有多种实际应用。我们力求在这篇综述中涵盖当前的合成技术及其在 2D MoS 2 材料中的应用。关键词:过渡金属二硫化物 (TMD)、二硫化钼 (MoS 2 )、二硫化钼材料的合成技术以及二硫化钼的应用。
10:50–11:30:休息/电子海报会议 11:30 – 11:40:Andrea Tomadin(意大利比萨大学)O 光激发石墨烯的有效塞贝克系数理论 11:40 – 11:50:Adam Rycerz(波兰雅盖隆大学)O 掺杂石墨烯中的亚 Sharvin 电导和增强散粒噪声 11:50 – 12:00:Argyrios Varonides(美国斯克兰顿大学)O 通过正向偏置石墨烯/n-GaAs 肖特基结中的隧穿实现电子发射理论 12:00 – 12:30:Marcos A. Pimenta(巴西 UFMG 大学)K 旋转双层石墨烯中层内和层间电子-声子过程的共振拉曼增强 12:30 – 12:40:Artur Dobrowolski (Lukasiewicz 研究网络-微电子与光子学研究所,波兰) O 根据 SiC 衬底的拉曼响应确定石墨烯层数 12:40 – 12:50:Karolina Pietak(Lukasiewicz 研究网络-微电子与光子学研究所,波兰) O 通过介电层沉积增强石墨烯相关和衬底相关的拉曼模式 12:50 – 13:00:Jakub Jagiello(Lukasiewicz 研究网络-微电子与光子学研究所) : 13:00 – 13:10: Konrad Wilczynski (华沙理工大学,波兰) O 支撑单层和多层 WS2 纳米片中的声子非谐性 - 第一性原理和拉曼研究 13:10 – 13:20: Christoph Geers (NanoLockin GmbH,瑞士) O 用于分析石墨烯的主动热成像技术 13:20 – 14:20 : 午餐休息 14:20 – 14:50: Joshua A. Robinson (宾夕法尼亚州立大学,美国) K 探索原子极限的金属 14:50 – 15:00: Assael Cohen (特拉维夫大学,以色列) O 一种用于晶圆级高光学质量 TMD 的创新方法 原子通过 MOCVD 技术进行层生长 15:00 – 15:30: Joan M. Redwing (美国宾夕法尼亚州立大学) K 蓝宝石上的 TMD 阶梯定向外延
