光学纳米天线能够在纳米尺度上压缩光并增强光与物质的相互作用,因此对光子器件和光谱学具有重要意义。其中,由支持声子极化子的极性晶体制成的纳米天线(声子纳米天线)表现出最高的品质因数。这是因为这些材料固有的低光损耗,然而,由于它们的介电性质,阻碍了纳米天线的光谱调谐。在这里,通过近场纳米显微镜监测,在很宽的光谱范围(≈ 35 cm − 1 ,即共振线宽 ≈ 9 cm − 1 )内实现了声子纳米天线中超窄共振的主动和被动调谐。为此,将由六方氮化硼制成的单个纳米天线放置在不同的极性基底上(例如石英和 4H-碳化硅),或用高折射率范德华晶体 (WSe 2 ) 的层覆盖它,以改变其局部环境。重要的是,通过将纳米天线放置在费米能量变化的门控石墨烯单层顶部,可以实现纳米天线极化子共振的主动调谐。这项工作提出了具有超窄共振的可调极化子纳米天线的实现,可用于主动纳米光学和(生物)传感。
扭曲的MoiréVander waals异质结构有望为强烈相关的材料提供强大的量子模拟平台,并实现实验室中拓扑状态等物质的难以捉摸的状态。我们证明了扭曲过渡金属二甲元基(TMD)异纳米骨的Moiré带表现出非平凡的拓扑顺序,这是由于k valleys中的价和传导带状态的趋势而形成巨大的带隙(当旋转式孔隙(SOC)时)形成巨型带隙(SOC)。在扭曲的WS 2 /MOS 2和WSE 2 /MOSE 2的特征中,我们发现与拓扑平面带相关的沉重费米子和存在强相关状态的存在,从而增强了异常的霍尔电导率(AHC)。通过频段分析,我们表明来自±K-Valleys的最高传导带非常平坦,并带有旋转/山谷Chern号。此外,我们证明了MoiréTMDHetero-Nanoribbons中的非线性异常大厅效应可用于操纵Terahertz(THZ)辐射。我们的发现建立了Vi tmd纳米容器的扭曲异质结构,作为工程拓扑山谷量子阶段和THZ非线性霍尔电导率的可调平台。
糖尿病被认为是最致命的糖尿病是一种常见的慢性疾病。也会引起许多疾病的出现,尤其是神经病,肾病和视网膜病。在这种情况下,通过准确评估症状并早期诊断该疾病非常重要。本研究旨在提供一个有效的模型,可以在早期以最佳准确性来确定糖尿病的风险。为此,合奏方法支持糖尿病风险预测中经常使用的分类算法。首先,通过使用520个样本的数据集分别分别分析了幼稚贝叶斯(NB),树木-J48,K最近的邻居(KNN)和顺序最小优化(SMO)分类器的性能,并使用来自Sylhet糖尿病医院患者的直接问卷收集的520个样本的数据集,Sylhet,Bangladesh,Bangladesh,Bangladesh。然后,研究了Adaboost,Bagging和随机子空间(RSS)算法对分类器成功的影响,并表明基于Adaboost方法的J48分类器具有最佳准确性。最后,应用包装器子集评估(WSE)特征提取算法用于降低估计成本并增加分类成功。因此,使用建议的分类器方法减少数据集实现最佳准确性(99%)。
在光学量子信息处理中,基于半导体材料中的两级系统的单光子源可实现单个光子的需求生成。为了启动伴随发射过程,有必要有效地填充激发态。然而,由于在固态环境中存在电荷噪声和声子诱导的反应性,因此以高效率和高光子不明智的效率和高光子不明智的态度来调解需求的需求仍然是一个挑战。在这里,我们重建了WSE 2量子发射器在发射过程中经历的声子光谱密度,我们将此信息用于理论上分析谐振,声音辅助和量子发射器种群(SUPER)摇摆激励方案的性能。在谐振激发下,我们获得了强烈的声子耦合的激发剂限制为0.80的激动子制剂,而超级方案(或0.89,根据所考虑的发射极类型)提高到0.96(或0.89)。在近谐振的语音辅助激发下,我们的理论预测了近乎统一的激发保真度,最高为0.976(0.997)。此外,我们证明,假设抑制了声子边带,诸如电荷和自旋波动之类的残留脱位机制是破坏光子无法区分性的主导地位的反折叠机制。
能耗是任何电子设备最重要的方面之一,为了实现更好的可持续未来,需要进一步改进。这同样适用于商用光电探测器,它们使用巨大的外部偏置电压消耗大量能量。到目前为止,薄膜已广泛用于各种电磁辐射波段的光电探测。与基于纳米结构的设备相比,唯一阻碍它们发展的特性是性能较慢、响应度较低。然而,基于纳米结构的光电探测器的缺点是,由于设备制造步骤复杂且昂贵,它们缺乏大规模生产或商业化的可扩展性。解决这一限制的一个可行解决方案可能是使用混合结构,即 ZnO、(Al、Ga、In)N 和 GaAs 等高质量晶体材料与 MoS 2、石墨烯、WSe 2 和 SnS 2 组成的二维材料的组合。这将提供对带隙工程的广泛控制,可用于可扩展的模块化设备制造。这些方法有望开发出具有相对较高响应度和自供电光电探测器的光电探测器。当前的观点侧重于 III 族氮化物基光电探测器的进展及其使用混合 III 族氮化物/2D 界面的自供电、宽带和超快光电探测器的广阔前景。
摘要:单光子发射器的有效片上集成是光子集成电路在量子技术中应用的重大瓶颈。如果不是因为当前设备缺乏可扩展性,共振激发固态发射器正在成为近乎最佳的量子光源。目前的集成方法依赖于光子集成电路中成本低廉的单个发射器放置,这使得应用无法实现。一个有前途的可扩展平台基于二维 (2D) 半导体。然而,波导耦合 2D 发射器的共振激发和单光子发射已被证明是难以实现的。在这里,我们展示了一种可扩展的方法,使用氮化硅光子波导同时应变定位来自二硒化钨 (WSe 2 ) 单层的单光子发射器并将它们耦合到波导模式中。我们通过测量 g (2) (0) = 0.150 ± 0.093 的二阶自相关来演示光子电路中单光子的引导,并进行片上共振激发,得到 ag (2) (0) = 0.377 ± 0.081。我们的研究结果是实现可扩展光子量子电路中量子态的相干控制和高质量单光子复用的重要一步。关键词:二维材料、单光子发射器、光子集成电路、量子光子学、共振荧光、应变工程
超快泵和探针脉冲的时间分辨光发射是一种具有广泛应用潜力的新兴技术。实时记录非平衡电子过程,化学反应中的瞬态状态或电子和结构动力学的相互作用为未来的研究提供了有趣的机会。将价值波段和核心水平光谱与用于电子,化学和结构分析的光电子衍射相结合,需要少数10 fs的软X射线脉冲,其中大约10 MeV光谱分辨率,目前可在高复兴速率的频率射击器激光器下可用。我们已经构建并优化了在Flash/pg2上委托使用的多功能设置,该设置将自由电子激光功能和用于光发射研究的多维录制方案结合在一起。我们使用带有飞行时间记录的全场成像动量显微镜作为以空前效率(k x,k y,e)参数空间(k x,k y,e)映射的检测器。我们的仪器可以在几个EV的结合能量范围内成像最多7Å-1直径的全表面布里渊区,同时解决约2.5×10 5数据素体。在36.5 eV和109.5 eV的光子能量下测量的范德华半导体WSE 2中使用超快激发态动力学
专业摘要我着迷于新颖的仪器可以改变我们可以理解纳米级系统的异国物理学的方式。在研究生院我开发了一种技术,可以有效研究二维(2D)材料的超快光电学。6,我揭示了摩西2 -WSE 2异质结构的层间激子中的激子 - 偶联,在2d Mote 2中,在2d Mote 2中的4个热载体物理学,2 -Mote液相发表于自然光子学上。7我已经对生物系统进行了建模,特别是专注于量子结构在减少光合作用中有害噪声中的重要性,该噪声发表在科学上。5在我的博士后中,我在尖端(NSOT)磁力测定技术上学习了纳米Quid,并将其与热力学压缩性测量相结合,以探索铁磁性相干性和自旋轨道偶联,以在Trilrayer Graplene intaly in yalthy insical中的形成型rhombohedralayer Grapline intaly insicals的对称性阶段中的旋转耦合。3最近,我应用了这种方法来阐明菱形石墨烯中非常规超导性的性质。1教育2020博士学位在加利福尼亚大学河滨大学,2014年M.S. 加利福尼亚大学物理大学,2013年河滨大学 华盛顿大学物理大学研究经验:加利福尼亚大学圣塔芭芭拉分校的博士后研究 - 目前的PI:Andrea Young1教育2020博士学位在加利福尼亚大学河滨大学,2014年M.S.加利福尼亚大学物理大学,2013年河滨大学 华盛顿大学物理大学研究经验:加利福尼亚大学圣塔芭芭拉分校的博士后研究 - 目前的PI:Andrea Young加利福尼亚大学物理大学,2013年河滨大学华盛顿大学物理大学研究经验:加利福尼亚大学圣塔芭芭拉分校的博士后研究 - 目前的PI:Andrea Young
近年来,量子纳米光子学领域蓬勃发展,人们对新理论、新器件和新应用的开发兴趣浓厚。“量子纳米光子学”特刊通过评论、观点和研究论文重点介绍了该主题的一些最新进展。本期包含评论和观点文章,全面概述前沿主题。Chang 和 Zwiller [1] 回顾了使用纳米线的集成量子光子学的最新进展,重点介绍了集成发射器、探测器和制造方法。这篇评论还介绍了基于纳米线的量子信息处理和传感应用。Gali [2] 总结了从头算理论,以充分理解固态量子比特,它是量子光子装置中的重要组成部分。该计算方法已应用于激发态、光电离阈值、光激发光谱、有效质量态和自旋动力学的计算。这种方法可以提供超越传统密度泛函理论的洞见,因为传统密度泛函理论无法完全捕捉激发态的特性。生物技术正被用于各种量子光学和光子学,反之亦然。DNA 纳米技术利用 DNA 信息设计和制造用于技术用途的人工核酸结构,已被用于量子发射器领域。DNA 的奇异特性使我们能够在分子水平上抓住量子发射器并控制它们的指向器。Cho 等人 [3] 对相关研究进行了广泛的综述。相反,对量子光学中光物质相互作用的理解为研究化学和生物过程提供了线索。Kim 等人 [4] 综述了基于光与物质与光学谐振器相互作用的丛激子和振动极化子强耦合。作者从强耦合的基本原理、丛激子的结构和特性以及在化学和生物检测中的应用进行了介绍。Kim 等人 [5] 对基于光与物质相互作用的丛激子和振动极化子强耦合进行了综述。 [ 5 ] 讨论了纳米光子共振工程可以实现接近 1 的读出保真度,而这对于提高 NV 量子传感的灵敏度是必需的。该观点深入了解了 NV 量子传感的背景、共振结构的应用以及实际传感中剩余的挑战。Zheng 和 Kim [ 6 ] 讨论了钙钛矿基发光二极管的降解机制。降解可能发生在外部和内部过程中,从而对性能和稳定性产生不同影响。其中包括各种关于量子纳米光子学的研究文章。人们对优化可集成到光子回路中并实现实际应用的单光子发射器 (SPE) 的兴趣日益浓厚。Azzam 等人。[7] 展示了使用介电腔对 WSe 2 SPE 的 Purcell 增强。介电腔在 WSe 2 上施加定向应变分布,可以选择性地控制 SPE 的极化状态。徐等人 [8] 报道了一种基于纳米金刚石 (ND) 的高纯度 SPE,其硅空位 (SiV − ) 中心带负电,采用离子注入法。他们成功地阻止了 SiV − 发射极
2D 过渡金属二硫属化物 (TMDC) 是原子级厚度的半导体,在晶体管和传感器等下一代光电应用方面具有巨大潜力。它们的大表面体积比使其节能,但也对物理化学环境极为敏感。在预测电子行为(例如其能级排列)时必须仔细考虑后者,这最终会影响器件中的电荷载流子注入和传输。这里展示了局部掺杂,从而通过化学工程改造支撑基板的表面来调整单层 TMDC(WSe 2 和 MoS 2)的光电特性。这是通过使用两种不同的自组装单层 (SAM) 图案的微接触印刷来装饰基板来实现的。SAM 具有不同的分子偶极子和介电常数,显著影响 TMDC 的电子和光学特性。通过分析(在各种基底上),可以确认这些影响完全来自 SAM 和 TMDC 之间的相互作用。了解 TMDC 所经历的各种介电环境可以建立电子和光学行为之间的关联。这些变化主要涉及电子带隙宽度的改变,可以使用肖特基-莫特规则计算,并结合 TMDC 周围介质的屏蔽。这些知识可以准确预测单层 TMDC 的(光)电子行为,从而实现先进的设备设计。