纳米技术(纳米医学)有望帮助我们实现上述目标。各种纳米药物输送方法的发展在疾病的诊断、检测和治疗中发挥着至关重要的作用。这些纳米药物输送系统可以安全地将药物以可控的浓度转移到癌组织,避免与网状内皮系统相互影响。17 纳米载体由于尺寸与生物结构相似,对用于癌症治疗的纳米药物输送系统有重大影响;这些纳米载体可以轻松穿透细胞膜并延长循环时间。18 – 20 由于血管生成快速且有缺陷(从旧血管合成新血管),肿瘤血管的通透性增加,从而使纳米载体能够进入。此外,肿瘤内淋巴引流不畅会困住纳米载体,使它们将药物转移到癌细胞附近。这些药代动力学修改通过明确针对癌症部位并在活性持续时间内保持治疗剂在其特定缺陷部位的增加浓度来提供更好的结果。这种靶向化疗剂利用细胞凋亡和麻醉来杀死癌细胞。 21 – 23 新一代纳米载体是二维纳米材料,例如二硒化钨24 (WSe2)、硅烯25、锗烯26、二硫化钼27 (MoS2)、硒化铋28 (Bi2Se3)、二氧化锰29、过渡金属二硫属化物 (TMDs)、六方氮化硼30 (h-BN) 和玻璃纤维增强塑料 (GRP) 因其独特的物理化学性质而成为一些重要的纳米载体。 31 – 34 玻璃纤维增强塑料 (GRP) 形成了蜂窝状二维晶格结构,其中所有碳原子都是 sp2 杂化的,因而具有令人难以置信的机械和电气性能,由于具有良好的表面反应性和自由 p 电子,因此常用于光电装置、太阳能电池中的光电导材料、药物输送和医学成像。35 自由表面 p 电子可有效进行 p – p 相互作用、与难溶性药物的静电或疏水相互作用以及药物输送系统中的非共价相互作用。36 玻璃纤维增强塑料 (GRP) 与生物分子、组织和不同类型细胞的相互作用对其生物医学应用、毒性和生物相容性具有重要意义。37 玻璃纤维增强塑料 (GRP) 作为纳米载体,可以通过内吞作用快速进入细胞,并在刺激下成功地将药物释放到细胞溶胶中。 38 玻璃纤维增强聚合物中装载药物与载体的重量比为 200%,这使玻璃纤维增强聚合物成为一种比其他纳米载体更高效、更受欢迎的纳米载体。39 玻璃纤维增强聚合物对槲皮素、5-氟尿嘧啶和柔红霉素的载药能力已被研究用于癌症治疗。40 通过 DFT 计算 41,42 和分子动力学模拟研究了药物与玻璃纤维增强聚合物之间的相互作用。HPT (3 0 ,5,7-三羟基-4-甲氧基阿伐酮)及其代谢物是具有生物活性的阿伐酮类化合物,可用作抗氧化剂、抗糖尿病剂、抗癌剂、雌激素剂、抗炎剂和心脏神经保护剂。43 这种多羟基阿伐酮常见于蔬菜、柑橘幼果、西红柿、苹果和鲜花中。44 HPT 具有疏水性(水溶性差),在消化道中稳定性不足,导致口服吸收不良。45 许多研究小组正在努力通过纳米药物输送系统(如纳米制剂、
自2005年发现石墨烯以来,相互作用的2D电子系统中特殊地面的形成引起了人们的关注[1]。除了磁有序外,还报告了有关最近实验中的电荷顺序和与Mott阶段配对的报道[2-4]。在WSE 2 /WS 2层[5,6]和α -rucl 3 [3,4]中的最新实验中,我们分析了在双层激子中存在莫特相的条件,并且在量子和热波动方面的稳定性及其稳定性。氯化氯化物α-相(α -rucl 3)是一种具有强旋轨耦合的分层化合物,以其有趣的电子特性而闻名,尤其是其在量子材料中的潜在使用和自旋液体相[7-12]。其电子结构受RU 4 d轨道和晶体场效应的影响。α相具有强旋轨耦合的特征,该耦合表现出多轨蜂窝状莫特绝缘阶段[3,7,13-19]。对于相关电子系统的研究,此阶段特别有趣。已经对α -rucl 3的蜂窝晶格的电子结构的作用进行了广泛研究,使用光发光表格[14],拉曼散射[20-22],光发射光谱[23],THZ光谱[24,25],x-雷雷镜[26] intrastry sptription [26] intrastry Sptiptrys [26] [27]。尽管Mott Gap的大小正在争论中,但在实验研究中已经证明了Mott绝缘子在α -RUCL 3中的存在[13,17,21,23]。Qiu等。 参考文献中报告。 1。Qiu等。参考文献中报告。1。调查Mott绝缘子的核心任务之一应解决带电颗粒分布的刚度。这在很大程度上取决于间隙的大小相对于跳跃速率以及材料的化学掺杂。通过化学掺杂Mott绝缘子来调整材料特性是非常具有挑战性的。具有示例性莫特绝缘子的有前途的候选者是α -rucl 3,顶层的石墨烯是α -rucl 3。而α -rucl 3带有孔,而额外的石墨烯片充当电子储层。[3]如何量身定制由石墨烯和α -rucl 3组成的范德华异构结构等电子结构。该材料的示意图如图然后,石墨烯层的电子和α -rucl 3层中的孔会受到有吸引力的层间相互作用,从而导致激子的形成[28]。在此设置中,激子的密度通过电子的密度控制,后者通过连接到石墨烯片的电栅极调节[3]。栅极电压诱导激子气体的有效化学电位µ。与化学掺杂相反,来自石墨烯的掺杂提供了连续的可调节性,并且不会引入不希望的晶格失真。分别对电子和孔的内部排斥可以产生电荷密度波或广义的Wigner晶体[29]。电荷顺序也可能是由电子 - 波相互作用引起的[30]。基于自一致的Hartree-fock或连贯的电位近似[31]的最新计算表明,如果对材料的特定细节计算自我能量,则复杂的自我能量可以描述实验结果的合理近似来描述实验结果。不参考特定的显微镜机制,这是对双重