扭曲的二维(2D)Van der Waals(VDW)量子材料以其非同规性的超导性,金属绝缘体过渡(MOTT TRUSTITION),旋转液相等而闻名,为强电子相关提供丰富的景观。这种电子相关性也解释了扭曲晶体中的异常磁性。然而,由于缺乏理想的材料以及设计Moiré磁铁与它们的新兴磁性和电子特性相关的适当方法,因此限制了2D扭曲磁力领域的进步。在这里,我们设计了VDWMoiré磁铁,并证明了旋转两个单层的简单动作,即以各种扭曲角度旋转1T-NBSE 2和1T-VSE 2,产生了增强和淬灭的局部磁性磁矩的无均匀混合物,每个过渡金属杂种(V)和niobium(V)和Niobium(V)和NB)(NB)Antome。准确地说,扭曲角会影响每个组成层的局部磁矩。在VDWMoiréSuprattice中出现了引人注目的频带和巡回的铁磁性,后者令人满意的Stoner标准。这些特征是由原子晶格位点的轨道复杂化而不是层之间的层间耦合引起的。此外,在未介绍的杂波系统中鉴定出轨道磁性。结果提出了一种有效的策略,该策略是针对扭曲调节的现场磁性的新量子力学现象的洞察力。
摘要X射线光学的科学和技术已经走了很远,从而使X射线专注于高分辨率X射线光谱,成像和辐照。尽管如此,在X射线制度中,许多形式的裁缝波对光学状态的应用产生了重大影响。从根本上讲,这种差异源于所有材料在高频上接近统一的折射率的趋势,这使得X射线光分量(例如镜片)和镜像更难创建,并且通常效率更低。在这里,我们提出了一个新概念,用于X射线聚焦,基于将弯曲的波前诱导到X射线生成过程中,从而导致X射线波的内在聚焦。这个概念可以看作是有效地将光学元件整合为发射机制的一部分,从而绕过X射线光学组件施加的效率限制,从而实现了具有纳米级焦点斑点大小和微米尺度的纳米镜的创建。特别是,我们通过设计由自由电子驱动时会塑造X射线的大约VDW异质结构来实现此概念。聚焦热点的参数,例如侧向尺寸和焦点深度,是层间间距chirp和电子能量的函数。期待,创建多层VDW异质结构的持续进展开放了X射线纳米梁的焦点和任意形状的前所未有的视野。
摘要:宽带隙半导体,例如氧化镓 (Ga 2 O 3 ),因其在下一代高功率电子器件中的应用而备受关注。尽管单晶 Ga 2 O 3 衬底可以常规地从熔体中沿各种取向生长,但关于这些取向的影响的报道却很少。此外,由于缺乏 p 型掺杂,用 Ga 2 O 3 制造整流 pn 二极管一直很困难。在本研究中,我们通过改变以下三个因素在 β-Ga 2 O 3 上制造和优化了 2D/3D 垂直二极管:衬底平面取向、2D 材料选择和金属触点。使用高温相关测量、原子力显微镜 (AFM) 技术和技术计算机辅助设计 (TCAD) 模拟验证了我们的设备的质量。我们的研究结果表明,2D/3D β-Ga 2 O 3 垂直异质结通过基底平面取向(-201)进行优化,结合 2D WS 2 剥离层和 Ti 接触,并显示出记录的整流比(> 10 6 )同时具有导通电流密度(> 10 3 A cm -2 ),可用于功率整流器。
少原子层薄材料 [1–3] 的合成引发了大规模研究的火花,旨在操控其宏观特性。最近,二维磁有序材料也已生成。[4–7] 这些化合物的长程磁序似乎极易受到晶格畸变的影响,这是因为磁各向异性在稳定二维磁体中的长程有序方面发挥了作用。[8] 通过各种机制超快产生声子已被证明是在基本时间尺度上驱动和控制块体磁体自旋动力学的有力工具。[9–14] 这种途径也适用于范德华二维材料晶体,最近在铁磁 CrI 3 晶体中发现动态自旋晶格耦合就证明了这一点。 [15] 从自旋电子学角度来看,二维反铁磁体与铁磁体相比具有几个基本优势。主要优势在于基态更稳定,磁共振频率在 THz 范围内,比铁磁体高几个数量级。至关重要的是,反铁磁磁子与声子的耦合处于光学声子的能量范围内,这导致了最近有关二维反铁磁材料中杂化磁子-声子准粒子的报道。[16–20] 因此,光驱动的集体晶格模式具有在二维反铁磁体中光学控制长程磁序的潜力,这是基于已证实的可能性,即使光子能量远离其本征频率,也可以完全相干地驱动此类模式[21,22],也基于它们与磁子的强耦合。在此背景下,过渡金属三硫属磷酸盐(MPX3,其中M = Ni、Fe、Mn、... 和X = S、Se)代表了一类有趣的范德华反铁磁体。[23–26] 虽然据报道在独立的 NiPS3 块体单晶中 [27] 可以产生光学磁振子,但这种材料缺乏可扩展性到二维极限。事实上,实验证明,NiPS3 的单原子层在磁排序上与 MnPS3 [28] 和 FePS3 [25] 并无不同。
二维(2D)半导体在高性能电子中的实际应用需要与大规模和高质量的电介质进行整合 - 然而,由于它们的悬空无键,这是迄今为止的挑战。在这里,我们报告了一种干介电整合策略,该策略使晶圆尺度和高κ电介质在2D半导体之上转移。通过使用超薄缓冲层,可以预处理下沉积,然后在MOS 2单层的顶部进行机械干燥转移。转移的超薄电介质纤维可以保留晶圆尺度的晶格和均匀性,而无需任何裂缝,表明高达2.8μf/cm 2的电容,等效的氧化物厚度降至1.2 nm,泄漏率降至1.2 nm,泄漏的电源量〜10-7 A/cm 2。Fab的顶栅MOS 2晶体管显示出固有的特性,而没有掺杂效应,启示率为〜10 7,子阈值向下旋转至68 mV/ dec,最低的界面状态为7.6×10 9 cm-2 ev-1。我们还表明,可扩展的顶门阵列可用于构建功能逻辑门。我们的研究为使用具有良好控制厚度,均匀性和可扩展性的行业兼容的ALD工艺提供了可行的途径。
范德华 (vdW) 磁体的发现为凝聚态物理和自旋电子技术开辟了新范式。然而,具有 vdW 铁磁体的有源自旋电子器件的操作仅限于低温,从而限制了它们更广泛的实际应用。本文展示了使用石墨烯异质结构中的 vdW 流动铁磁体 Fe 5 GeTe 2 的横向自旋阀器件在室温下的稳健操作。在具有负自旋极化的石墨烯界面处测量了 Fe 5 GeTe 2 的室温自旋电子特性。横向自旋阀和自旋进动测量通过自旋动力学测量探测 Fe 5 GeTe 2 /石墨烯界面自旋电子特性,揭示了多向自旋极化,从而提供了独特的见解。密度泛函理论计算与蒙特卡罗模拟相结合,揭示了 Fe 5 GeTe 2 中显著倾斜的 Fe 磁矩以及 Fe 5 GeTe 2 /石墨烯界面处存在负自旋极化。这些发现为范德华界面设计和基于范德华磁体的自旋电子器件在室温下的应用提供了机会。
简单的苏格兰胶带将其剥落到本构单层。[1]高温超导体(HTSC)提供多种这样的分层相关系统。Remarkably, even the atomically thin Bi 2 Sr 2 CuCa 2 O 8 + δ (BSCCO) layers, i.e., the layers containing a single or a few ele- mentary cells, have been found to possess the superconducting transition tempera- ture close to that of the bulk samples [2,3] and showed the superconductor–insu- lator transition driven by the evolution of the density of states.[4]由于这些属性,HTSC可以用作VDW异质构造的起始块。但是,隔离拥有超导性的铜酸盐单层仍然是一项艰巨的任务,尤其是如果人们希望实现薄而结晶的界面。关键是,如果在环境气氛下被氧气污染,原子上的BSCCO薄片会高度绝缘。[1,5]拉曼测量结果[5,6]报道了薄BSCCO薄片中氧气的高化学活性。更详细的研究[7]表明,水分子也可以迅速恶化BSCCO薄片的表面。此外,铜层中的氧气掺杂剂在上方移动
发现Van der Waals(VDW)磁铁为冷凝物理物理和自旋技术打开了新的范式。但是,使用VDW铁磁磁铁的主动自旋设备的操作仅限于低温温度,从而抑制了其更广泛的实际应用。在这里,展示了使用石墨烯的异质结构中使用VDW行程的Ferromagnet Fe 5 Gete 2的侧向自旋阀设备的稳健室温操作。Fe 5 Gete 2的室温自旋特性在用石墨烯的界面上测量,具有负自旋偏振。横向自旋阀和自旋细分测量通过通过自旋动力学测量探测Fe 5 Gete 2 /Geate 2 /石墨烯界面旋转特性,从而提供了独特的见解,从而揭示了多方向自旋偏振。密度功能理论与蒙特卡洛模拟结合使用,在Fe 5 Gete 2中显示出明显的Fe磁矩,以及在Fe 5 Gete 2 / Graphene界面上存在负自旋极化。这些发现在环境温度下基于VDW界面设计和基于VDW-MAGNET的Spintronic设备的应用开放机会。
过渡金属三卡构基化(TMTC)是准二维(1D)MX 3-Type van der wa wa waals分层半导体,其中M是IV和V组的过渡金属元素,X表示chalcogen元素。由于独特的准1D晶体结构,它们具有多种新型的电气特性,例如可变的带镜,电荷密度波和超导性,以及高度各向异性的光学光学,热电和磁性。TMTC的研究在1D量子材料字段中起着至关重要的作用,从而在材料研究维度中实现了新的机会。目前,已经在材料和固态设备方面取得了巨大进展,证明了在实现纳米电子设备中的有希望的应用。本评论提供了一个全面的概述,以根据TMTCS调查材料,设备和应用程序的最新技术。首先,已经讨论了TMTC的符号结构,当前的主要合成方法和物理特性。其次,提出了各个领域中TMTC应用的示例,例如光电探测器,储能设备,催化剂和传感器。最后,我们概述了TMTC研究的机会和未来观点,以及基础研究和实际应用中的挑战。
当二维范德华材料被堆叠以构建异质结构时,Moir'E模式从扭曲的界面或单个层的晶格常数中的不匹配出现。放松原子位置是Moir'e模式的直接,通用的后果,对物理特性具有许多影响。moir´e驱动的原子放松可能被天真地认为仅限于界面层,因此与多层异质结构无关。但是,我们提供了两种类型的范德华异质结构的三维性质的重要性的实验证据:首先,在多层石墨烯中以小扭曲角(θ≈0。14°),我们观察到弛豫结构域的传播甚至超过18个石墨烯层。第二,我们展示了如何在BI 2 SE 3上使用多层PDTE 2,Moir´e晶格常数取决于PDTE 2层的数量。以实验发现的启发,我们开发了一种连续方法,以基于Ab Initi拟示的广义堆叠断层能量功能对多层弛豫过程进行建模。利用该方法的连续性属性使我们能够访问大规模的制度并与我们在这两个系统的实验数据达成协议。此外,众所周知,石墨烯的电子结构敏感取决于局部晶格变形。因此,我们研究了多层松弛对扭曲石墨系统状态局部密度的影响。我们确定对系统的可测量含义,通过扫描隧道显微镜在实验上访问。我们的多层松弛方法不限于讨论的系统,可以用来发现界面缺陷对各种层次感兴趣系统的影响。