检测化学和生物物质,以涉及各种应用方案,例如可穿戴电子设备,智能点(POC)诊断,环境监测等。[1,2]要适当地满足这些新兴要求,理想的生化传感器应具有诸如高灵敏度,长期鲁棒性,快速响应,实时监测能力,出色的选择性,低单位成本,检测下限,较大的动态范围,低功耗等等等特性[3]但是,人类仍然需要进行陡峭的攀登之旅才能实现这些目标。值得注意的是,2019年冠状病毒病的全球大流行(Covid-19)表明,我们的技术储备在满足这种紧急,庞大和多功能的要求方面并没有充分准备,并引起了对生化感测技术的极大关注。迄今为止,包括化学主义的几种主要技术路线,[4,5] plasonic,[6,7]电化学,[8,9]声传感器,[10,11]等。已经开发出来,每个传感器中的每一个都在某些上述方面具有针对各种实际应用方案的特定优点。纳米制造技术的快速开发用于不同材料和各种结构,由于其小特征和主动结构特性,例如高地表到数量,独特的物理特性,独特的物理特性等,戏剧性地增强了这些传感设备的性能。[12–14]
Peng, L. (2012)。用于集成电路 3-D 堆叠的晶圆级细间距 Cu-Cu 键合。博士论文,南洋理工大学,新加坡。
由于其优异的介电性能,玻璃可以作为表面离子阱制造中石英或蓝宝石的低成本替代材料。与高电阻率(5000 Ω·cm)硅衬底(20 MHz 时的典型损耗角正切为 1.5)相比[24],本文采用的玻璃衬底(Corning SGW 8.5)在 5 GHz 时的损耗角正切为 0.025,体积电阻率为 10 10 Ω·cm(数据可从产品信息表获得)。这省去了硅阱所需的射频屏蔽层和绝缘层,并使制造程序变得更加简单。此外,透明玻璃(波长为 300 至 2400 nm 的透射率为 90%)可以使光的传输和收集更加灵活,例如,通过在下面放置光纤和/或光电探测器。 [25]与其他介电材料(如蓝宝石和石英)相比,玻璃不仅成本低,而且可制造性更先进,可以实现高可靠性的玻璃通孔、[26,27]阳极键合、[28]
Vishay Siliconix Vishay Electronic GmbH Vishay Intertechnology Asia Pte. Ltd 2585 Junction Avenue, Dr.-Felix-Zandman-Platz 1, 37A Tampines Street 92, #07-01, - - - 美国加利福尼亚州圣何塞 95134 德国塞尔布 D-95100 新加坡,新加坡 528886 电话:+1-408-988-8000 电话:+49-9287-71-0 电话:+65-6788-6668 传真:+1-408-567-8942 传真:+49-9287-70435 传真:+65-6788-0988 - - -
* 通讯作者:nima.gorji@tudublin.ie 摘要 — X 射线衍射 (XRD) 映射是一种非破坏性计量技术,可以重建通过热机械应力在硅晶片上引起的翘曲。在这里,我们使用一种基于在 x 和 y 方向以及对同一样品进行不同 90 度旋转的一系列线扫描的方法来映射晶片的翘曲。这些线扫描从晶片表面收集摇摆曲线,记录由于表面取向错误而偏离布拉格角的衍射角 (ω)。表面翘曲通过引起测量的衍射角和参考布拉格角 (ω − ω0) 之间的差异和摇摆曲线增宽 (FWHM) 反映在 XRD 测量中。通过收集和整合整个表面和晶圆多次旋转的摇摆曲线 (RC) 和 FWHM 加宽,我们可以生成表面函数 f(x) 和角度错位 (翘曲) 的 3D 图。翘曲呈现凸形,与文献中报道的光学轮廓测量一致。基于实验室的 XRDI 有可能在更短的时间内原位绘制晶圆的翘曲图,就像在同步辐射源中完美执行一样。关键词:计量学、硅、翘曲、X 射线衍射、晶圆。I.介绍
*通讯作者:nima.gorji@tudublin.ie摘要 - X射线衍射(XRD)映射是一种非破坏性计量技术,可以通过热机械应力重建在硅晶片上引起的经线的重建。在这里,我们使用基于X和Y方向的一系列线扫描以及同一样品的不同90度旋转的方法绘制了晶圆的扭曲。这些线扫描从晶圆的表面收集摇摆曲线,记录由于表面不良导致的衍射角(ω)偏离了布拉格角。表面经线通过诱导测得的衍射角与参考角度角度(ω -ω0)和摇摆曲线扩展(FWHM)之间的差异来反映XRD测量。通过收集和整合摇摆曲线(RCS)和FWHM从整个表面和晶圆的多个旋转范围扩大,我们可以生成表面函数f(x)的3D地图和角度的不良方向(Warpage)。经线表现出凸形,与文献中报道的光学验证测量值对齐。基于实验室的XRDI有可能在较短的时间内和原位绘制晶圆的翘曲,这可以在同步加速器辐射源中完美地执行。关键字:计量学,硅,扭曲,X射线衍射,晶圆。I.简介
可见光摄像机能够使用波长范围从 0.4 到 0.7 µm 的电磁波记录适当照明的物体的图像。在波长超过 0.7 µm 的物体上成像非常有用,因为它可以揭示有关物体的更多信息并实现新的应用。然而,在更长的波长上成像需要配备特殊红外图像传感器和不同光学器件的摄像机 [1, 2, 3]。在众多类型的红外图像传感器和探测器技术中,有微测辐射热计,它实现了非制冷且价格实惠的热红外摄像机。这种热红外摄像机允许人们通过物体的辐射热(即通过普朗克辐射定律描述的红外辐射发射)获取物体的图像。微测辐射热计主要对长波红外 (LWIR) (8-14) µm 敏感,这与地球大气中的透明波段相吻合。与可见光摄像机一样,热红外摄像机在国防、交通、监控、消防、热成像和户外休闲方面具有许多应用和巨大的市场。许多新的应用领域都得益于微测辐射热计
在充满挑战的跨国环境中开展研究,为您提供绝佳的职业发展机会。您将有机会在尖端技术领域树立国际声誉。通过提供灵活的工作时间和异地工作的可能性,支持个人职业发展(例如会议、高级培训)以及满足员工的个人需求对我们来说非常重要。我们高度重视工作与家庭的兼容性。有关我们的科学卓越性和 IHP 工作环境的更多信息,请访问我们的网站。IHP 已通过 TOTAL E-QUALITY 认证,为男女提供平等的工作机会,并积极追求所有性别和所有群体的平等。我们促进女性的职业发展,并强烈鼓励她们申请。符合上述标准的残疾申请人将优先于具有同等相关资格的其他候选人。
Entegris ® 、Entegris Rings Design ® 和其他产品名称是 Entegris, Inc. 的商标,如 entegris.com/trademarks 所列。所有第三方产品名称、徽标和公司名称均为其各自所有者的商标或注册商标。使用它们并不表示商标所有者与它们有任何关联、赞助或认可。