摘要:半导体行业已经收到了开发技术需要提高效率和晶圆检查过程准确性的压力。检查半导体晶圆与传统检查系统的复杂性是一个问题,因此需要复杂的解决方案。本文着眼于半导体晶圆检查系统中人工智能(AI)的评估,以改善结果。在AI中应用ML和计算机视觉方法允许自动化缺陷识别,分类和增强的产率水平。从方法论中,该研究对晶圆检查中AI实践领域的当前研究和发展进行了彻底的分析,以及改进对制造过程的影响。实验研发的一些结论表明,半导体组织在检查速度和缺陷检测之比中的距离显着增强,从而支持半导体组织中AI收敛的概念。关键字:半导体,晶圆检查,人工智能(AI),机器学习(ML),计算机视觉,缺陷检测,屈服改善,深度学习。
n近年来,使用CMOS兼容的过程制造硅光子IC(SI PIC)已使具有光学和电函数性具有成本效益的硅芯片的开发。1 - 5)这项技术是光子学 - 电力融合的高性能平台,可在各种行业提供有希望的应用。6 - 9)为增强硅光子学的整合和功能密度,已提出异质和杂交整合方法,以将各种材料系统与单个包装中的各种材料系统相结合。10,11)但是,基于PIC的模块的总成本受到测试,组装和包装过程的影响,这可能占常规INP PIC模块的总成本的80%。12,13)仅产品测试可贡献总成本的约29%,14)对于较不发达的硅光子技术技术,该图可能会增加到约60% - 90%。15)因此,减少测试,组装和包装成本对于降低基于SI PIC模块的整体成本至关重要。先前的研究采用了两种主要策略来降低测试成本:利用增强的测试结构,16)并增强了测试过程的自动化水平。14)在图片中,一种普遍的测试方法涉及信号通过具有不平衡分裂比的定向耦合器(例如99:1)。这种构造允许99%的信号正常通过波导,而1%的信号被击倒到测试分支。21)17)开发信号通常通过表面耦合器耦合到测试设备,从而促进了自动晶圆级测试系统用于原位和筛选测试的利用。18)然而,在组装和包装阶段,表面光栅耦合器(GCS)在带宽,极化和效率方面遇到限制。19)相比之下,利用点尺寸转换器(SSC)的边缘耦合提供了优点,例如带宽的带宽,降低极化敏感性和增强的耦合效率。20)然而,边缘耦合预先挑战,例如与SSC相关的较大足迹,固定的耦合位置,有限的对齐耐受性和耦合方面的严格规范。
摘要:功率转换效率(PCE)是评估太阳能电池的输出特性的主要参数。抗反射涂层(ARC)起着抑制太阳能电池表面的光损失的作用,从而增强了PCE。本文研究了晶体硅(C-SI)太阳能电池上双层抗反射涂层(DLARC)的不同材料。使用PV Lighthouse软件的晶圆射线示踪剂完成模拟硅太阳能电池的总体过程方法。检查了具有不同类型的双层的五个光捕获(LT)方案。c-Si的最大电势光电密度(J MAX)用ARC显示出比参考c-Si(无弧)的J max的改善。lt方案II:SIO 2 /TIO 2产生J Max的最大值,其中该值为42.20 mA /cm 2。这表明方案II具有最高的J MAX增强功能,值为10.01%。这一发现意味着DLARC适用于减少光损失,因此有效地提高了太阳能电池的性能。关键字:光伏,太阳能电池,抗反射涂层,光捕获,射线跟踪1。简介
碳化硅电力电子代表了下一代技术,该技术已在更紧凑的外形下以更高的电压和更高的频率运行,在广泛的产品中展示了显著的整体能效改进。它们已用于著名的高端应用,包括电动汽车、工业、电气化铁路和风能电力电子,以及电网传输和电动汽车充电基础设施。该项目的目的是扩大和商业化一种新型的基于激光的制造技术,用于制造碳化硅晶片,碳化硅晶片是构建碳化硅电力电子的基本构件。成功采用了初始概念验证原型,并将其构建成一条完整的生产线,展示了低速率的初始生产。该项目已经证明,该技术有可能实现零材料损失,并且每个晶片的产量在几分钟内即可完成。这将大大降低导电碳化硅基板的成本,从而使这种材料系统经过验证的有益特性能够应用于各种应用的先进下一代电力电子中。
8 三星电子有限公司三星先进技术研究所 (SAIT),韩国水原 16678 gwanlee@snu.ac.kr 摘要 (Century Gothic 11) 通过化学气相沉积 (CVD) 在具有外延关系的晶体基底(例如 c 面蓝宝石)上合成了晶圆级单晶过渡金属二硫属化物 (TMD)。由于 TMD 外延生长的基底有限,因此需要将转移过程转移到所需的基底上进行器件制造,从而导致不可避免的损坏和皱纹。在这里,我们报告了通过过渡金属薄膜的硫属化在超薄 2D 模板(石墨烯和 hBN)下方的 TMD(MoS 2 、MoSe 2 、WS 2 和 WSe 2 )的异轴(向下排列)生长。硫族元素原子通过石墨烯在硫族化过程中产生的纳米孔扩散,从而在石墨烯下方形成高度结晶和层状的TMD,其晶体取向排列整齐,厚度可控性高。生长的单晶TMD显示出与剥离TMD相当的高热导率和载流子迁移率。我们的异轴生长方法能够克服传统外延生长的衬底限制,并制造出适用于单片3D集成的4英寸单晶TMD。参考文献 [1] Kang, K. 等。具有晶圆级均匀性的高迁移率三原子厚半导体薄膜。Nature 520 , 656-660 (2015).[2] Liu, L. 等。蓝宝石上双层二硫化钼的均匀成核和外延。Nature 605 , 69-75 (2022) [3] Kim, K. S. 等人。通过几何限制实现非外延单晶二维材料生长。Nature 614 , 88-94 (2023)。
Kulicke&Soffa自2008年以来,英国和爱尔兰的Hub Dicing Blades专有分销商已被扩展到包括奥地利,德国,荷兰和葡萄牙。注释编辑此新闻稿是由Inseto(英国)发行的,受技术内容创建和通信机构声明(www.declaration.co.uk,+44(0)1522 789000)的限制。如果您对此公告有任何编辑询问,请联系Mandy Warrilow,新闻官员,mandy@declaration.co.uk。,如果您需要与本新闻稿有关的文章或任何其他形式的副本,请联系技术作者Richard Warrilow,Richard@declaration.co.uk。请致电+44(0)1264 334505与Matt Brown联系,或通过电子邮件(matt.brown@inseto.co.uk)与所有广告和赞助事务有关。关于Inteto(UK)Limited成立于1987年和ISO 9001:2015自2005年以来的认证,Inteto是针对半导体,微电动和高级技术领域的设备和相关材料的领先技术分销商,以及电子,自动化和工业制造的粘合剂。公司有三个部门,即:
高击穿电压:GaN器件可以处理高电压 高电子迁移率:GaN晶体管用于无线通信的功率放大器 高电子迁移率:GaAs表现出优异的电子传输特性,使其适用于高频应用 低噪声系数:基于GaAs的器件通常用于敏感RF接收器的低噪声放大器(LNA) 高功率处理能力:GaAs功率放大器在RF通信系统中普遍存在。
1个国家固态微观结构实验室,电子科学与工程学院,物理学学院,工程与应用科学学院,中国南京210093的高级微观结构合作创新中心,高级微观结构中心; mg20220198@smail.nju.edu.cn(m.c.); 6020222220049@smail.nju.edu.cn(c.w.); jiakunpeng@nju.edu.cn(K.J.); liuhuaying@nju.edu.cn(h.-y.l.); zhusn@nju.edu.cn(S.-N.Z.)2国家固态微波设备和电路的国家主要实验室,南京电子设备研究所,南京210016,中国; tangjieck@126.com(J.T。); gxw_tk@163.com(X.G.); Chineqgll@163.com(G.Q.)3南京信息科学技术大学综合巡回赛学院,中国南京210044; zhongyan@njust.edu.cn 4 Nanzhi高级光电集成技术公司有限公司,Nanjing 210018,中国; yezhilin@ioptee.com(Z.Y.); yinzhijun@ioptee.com(z.y。)*通信:tianxiaohui@nju.edu.cn(X.-H.T.); xiezhenda@nju.edu.cn(z.x。)†这些作者为这项工作做出了同样的贡献。
本文介绍了一种无需依赖载体晶圆即可直接放置芯片到晶圆的替代方法,该方法专门针对混合键合、3DIC 和集成光子学应用而设计。芯片到晶圆键合是异质垂直集成设备制造中的关键工艺,通常涉及在集成到目标晶圆之前将各个芯片放置到载体或处理晶圆上的中间步骤。这种传统方法增加了成本、复杂性、潜在的兼容性问题和工艺步骤。在本研究中,我们提出了一种简化的工艺,消除了对载体晶圆的需求,从而简化了集成并减少了制造步骤。利用大气等离子清洗,我们清洁并激活芯片和目标晶圆的表面,以促进直接放置键合。通过实验验证,我们证明了这种方法的可行性和有效性。我们的研究结果展示了成功的芯片到晶圆键合,界面污染最小,键合强度增强。此外,我们还探讨了大气等离子清洗参数对键合质量的影响,为工艺优化提供了见解。这项研究为芯片到晶圆键合提供了一种有前途的替代方案,提高了垂直集成电路制造的效率和简便性,特别是在混合键合、3DIC 和集成光子学应用领域。