摘要:由对石墨烯的开创性研究触发,已经研究了二维分层材料(2DLM)的家族已有十多年了,并且已经证明了具有吸引力的功能。然而,仍然存在挑战,抑制了高质量的增长和电路水平的整合,而先前研究的结果仍然远远不符合工业标准。在这里,我们通过利用机器学习(ML)算法来评估影响MOS 2顶部门控型晶体管(FET)的电气特性的关键过程参数来克服这些挑战。然后通过ML与网格搜索相结合来指导晶圆尺度的制造过程,以使设备性能(包括移动性,阈值电压和亚阈值秋千)合作。针对MOS 2 FET实施了62级香料建模,并进一步用于构建功能性数字,模拟和光电检测电路。最后,我们介绍了晶圆尺度的测试FET阵列,以及使用行业标准设计流和流程的4位全加法器。总的来说,这些结果在实验中验证了ML辅助制造优化对超硅电子材料的应用潜力。
4.3.2 重叠................................................................................................ 30
3) 市场趋势 89 市场细分 InP 行业:发展时间表 InP 应用市场概览 技术概览、每种应用的经济要求 4) 市场份额和供应链 188 光子学和射频应用的 InP 供应链和商业模式 主要参与者和格局 不同地理区域主要晶圆和外延片参与者的映射 InP 裸片市场份额 打开 InP 外延片市场份额 InP 晶圆市场份额 公司简介:II-V、Lumentum、LandMark、Sumitomo、AXT、InPact、Denselight、Smart Photonics 5) InP 技术趋势 215 器件 • 基于 InP 的器件概览:光子学、集成 SiPh 和 PIC 和 RF 器件 外延 • 外延生长方法 • 关注 DFB 外延生长 • 讨论外延要求 晶圆 • InP 晶体生长方法 • 晶圆精加工 • 基板尺寸和类型 6) 展望 286 总结 7) 附录 291 8) Yole 集团公司介绍
莱布尼茨 IHP 莱布尼茨高性能微电子研究所 Leibniz-Institut für innovative Mikroelektronik 地址 Im Technologiepark 25 15236 Frankfurt (Oder) 网站:www.ihp-microelectronics.com 联系人 Dr. René Scholz(MPW 和服务)电子邮件:scholz@ihp-microelectronics.com 电话:+49 335 5625 647 传真:+49 335 5625 327
2 2401 Brewer Driver,Rolla,MO 65401,美国 * 通讯作者的电子邮件:vikram.turkani@novacentrix.com 摘要 临时键合和脱键合 (TB/DB) 工艺已成为晶圆级封装技术中很有前途的解决方案。这些工艺为晶圆减薄和随后的背面处理提供了途径,这对于使用 3D 硅通孔 (TSV) 和扇出晶圆级封装等技术实现异质集成至关重要。这些对于整体设备小型化和提高性能至关重要。在本文中,介绍了一种新颖的光子脱键合 (PDB) 方法和相应的键合材料。PDB 通过克服与传统脱键合方法相关的许多缺点来增强 TB/DB 工艺。PDB 使用来自闪光灯的脉冲宽带光 (200 nm – 1100 nm) 来脱键合临时键合的晶圆对与玻璃作为载体晶圆。这些闪光灯在短时间间隔(~100 µs)内产生高强度光脉冲(高达 45 kW/cm 2 )以促进脱粘。通过成功将减薄(<70 μm)硅晶圆从玻璃载体上脱粘,证明了 PDB 在 TB/DB 工艺中的可行性。对减薄晶圆和载体的脱粘后清洁进行了评估。通过每个闪光灯提供均匀、大面积照明(75 mm x 150 mm),并且能够串联灯以增加 PDB 工具的照明面积,PDB 方法为晶圆级和面板级封装技术提供了一种高通量、低成本的脱粘解决方案。关键词光子剥离、闪光灯、临时键合和脱粘、临时键合材料、晶圆级封装。
作为晶圆清洁过程,RCA(美国无线电公司)清洁主要使用。但是,RCA清洁存在诸如洗澡生活不稳定,重新吸附杂质和高温清洁等问题。在此,我们试图通过使用螯合剂(草酸)解决这些问题来提高硅晶片的纯度。通过参考Pourbaix图,可以鉴定出由清洁液和每个金属粉之间反应产生的化合物。所有金属在反应前均表现出10μm或更高的粒径分布,但反应后的粒径分布为500 nm。在适当的情况下,可以证实反应前后的金属显示出不同的吸光度。由于通过这种清洁溶液清洗了回收硅晶片表面的元素分析,因此证实除了SI以外,未检测到其他次级。关键字:回收硅晶片,晶圆清洁,金属杂质,金属复合物,螯合剂
摘要 玻璃可用作面板和/或晶圆级封装的核心基板,以实现日益复杂的封装中芯片和集成无源器件的异构集成。玻璃具有众多优势:玻璃的硬度 (i) 允许制造高精度的堆积层。这些堆积层在尺寸为 50mm x 50mm 及以上的大型芯片上可实现 1 m 及以下的制造精度,这是封装天线 (AiP) 应用和高性能计算 (HPC) 所需的。可以制造具有调整的热膨胀 (CTE) (ii) 的特殊玻璃,可以调整为硅或具有更大的热膨胀,以允许具有环氧树脂模具和金属化堆积层的封装在制造或运行期间承受高热负荷。玻璃还可以通过非常好的介电性能进行优化 (iii),并可用于封装天线。但最重要的是,经济的玻璃结构技术 (iv) 非常重要,它可以在玻璃面板中提供数百万个通孔和数千个切口,并且正在开发中。 SCHOTT 结构化玻璃产品组合 FLEXINITY ® 及其相关技术为先进封装所需的高度复杂的结构化玻璃基板提供了极好的起点。玻璃面板封装大规模商业化的最大障碍是整个工艺链的工业准备。这是将玻璃面板封装引入 IC 封装、RF-MEMS 封装和医疗诊断等应用所必需的,或者与扇出切口结合,嵌入有源和无源元件。此外,具有良好附着力、优异电气性能和高几何精度的玻璃金属化工艺是重要的一步。在当前的手稿中,我们回顾了现状并讨论了我们为实现面板和晶圆级封装中玻璃的工业准备所做的贡献。关键词玻璃中介层、玻璃封装、异质集成、面板级封装、玻璃通孔、晶圆级封装。
Entegris®、Entegris Rings Design® 和其他产品名称是 Entegris, Inc. 的商标,列于 entegris.com/trademarks 上。所有第三方产品名称、徽标和公司名称均为其各自所有者的商标或注册商标。使用它们并不表示商标所有者与它们有任何关联、赞助或认可。
Wafer Warpage是半导体制造商面临的基线问题,实际上,在与制造功率金属氧化物半导体磁场效应晶体管(MOSFET)的制造的人中尤为明显。这是因为垂直MOSFET与传统的外侧对应物相比会经历更大的经线效应。wafers超过其临界价值的瓦金(Wafers)在自动处理过程中无法通过吸尘器吸附来削减其临界价值;晶圆上制造的设备也面临可靠性问题。本文介绍了用于减少电源MOSFET晶体经纪的各种机制的分析。通过改变背面金属化(BSM)厚度,膜沉积的溅射功率和晶片温度(即将低温条件引入过程中)来检查扭曲行为。结果表明,当前端制造过程完成后,BSM厚度和晶圆的温度都与晶圆经膜的相关性明显相关。晶圆弓水平与溅射功率的大小直接成比例。当溅射功率降低时,诱发残留应力较小以变形晶片结构。因此,可以调整溅射功率,以确保扭曲效应保持在其临界值以下。关键字:经形,功率MOSFET,残余压力,背面金属化,溅射功率,低温温度