摘要:神经退行性疾病(NDDS)是无法治愈的,令人衰弱的疾病,导致中枢神经系统(CNS)中神经细胞的进行性变性和/或死亡。对CNS疾病的可行治疗靶标和新治疗方法的认同,尤其是NDD是药物发现领域的主要挑战。 这些困难可以归因于所涉及的细胞的多样性,神经回路的极端复杂性,组织再生的能力有限以及我们对基本病理过程的不完全理解。 药物发现是一个复杂而多学科的过程。 当前药物发现方案中的筛查速率意味着只有一种可行的药物可能是由于数百万筛查的化合物而产生的,因此需要改善发现技术和方案以解决多种损耗原因。 这已经确定需要筛选较大的库,其中使用有效的高通量筛选(HTS)成为发现过程中的关键。 HT可以每天研究成千上万种化合物的含量。 但是,如果可以筛选较少的化合物并损害成功的可能性,则成本和时间将大大降低。 为此,计算机辅助设计,计算机库中的最新进展以及分子对接软件结合了基于细胞平台的升级,已进化,以提高筛选效率,并具有更高的可预测性和临床适用性。对CNS疾病的可行治疗靶标和新治疗方法的认同,尤其是NDD是药物发现领域的主要挑战。这些困难可以归因于所涉及的细胞的多样性,神经回路的极端复杂性,组织再生的能力有限以及我们对基本病理过程的不完全理解。药物发现是一个复杂而多学科的过程。当前药物发现方案中的筛查速率意味着只有一种可行的药物可能是由于数百万筛查的化合物而产生的,因此需要改善发现技术和方案以解决多种损耗原因。这已经确定需要筛选较大的库,其中使用有效的高通量筛选(HTS)成为发现过程中的关键。HT可以每天研究成千上万种化合物的含量。但是,如果可以筛选较少的化合物并损害成功的可能性,则成本和时间将大大降低。为此,计算机辅助设计,计算机库中的最新进展以及分子对接软件结合了基于细胞平台的升级,已进化,以提高筛选效率,并具有更高的可预测性和临床适用性。我们在这里审查了HT在当代药物发现过程中,尤其是NDD的越来越多的作用,并评估其成功应用的标准。我们还讨论了HTS对新型NDD疗法的需求,并研究了验证新药物靶标和开发NDD的新疗法的当前主要挑战。