患者面临严重创伤,传染病或肿瘤引起的显着骨缺损时,通常需要手术骨移植才能完全愈合,这使得骨组织成为当今第二常见的移植组织(Migliorini等人,2021年)。传统的自体或同种异体骨移植经常遇到供体短缺,免疫排斥和对次级手术的需求(Dalipi等,2022)。骨组织工程(BTE)有可能通过促进快速骨再生来减轻这些问题。这是通过将官能细胞播种到生物相容性支架上的,在植入以促进骨骼再生之前,在体外培养到成熟。植入的支架为细胞提供了一个栖息地,可帮助营养供应,气体交换和废物清除。随着材料的降解,植入的骨细胞增殖,最终导致骨缺陷的修复(Ellermann等,2023; Jia等,2021)。BTE的关键在于鉴定高度生物相容性,迅速降解,无毒的脚手架材料,并且具有出色的孔隙率和表面生物活性。传统的支架材料,例如生物陶瓷,玻璃,金属和聚合物通常缺乏生物活性,导致诸如不良整合,磨损和腐蚀等问题,从而阻碍了功能性骨再生(Deng等,2023; Abbas et al。,2021;Pazarçeviren等,20221,20221)。虽然复合材料已经解决了单一材料的某些局限性,例如制造复杂性,脆性和对衰老的易感性,继续阻碍BTE的发展(Cannillo等,2021)。3D打印技术通过基于数字模型文件(Yang,2022)将粘合剂(例如金属或塑料)分层(例如粉末状金属或塑料)来构建对象。这项技术简化并加速了骨组织工程脚手架的制造,显着减少了生产时间,同时可以使用复杂的结构来创建个性化的脚手架,这极大地有益于患者损伤的修复(Anandhapadman等人,2022222222年)。尤其是3D生物打印的快速发展将其定位为生产组织工程脚手架材料的最有前途的技术之一,具有应对材料制备和推动材料科学和医学快速发展的主要挑战(Liu等人,2022年)。近年来,低温打印技术的应用进一步提高了脚手架的性能。Gao等。 (2022)证明,通过低温打印产生的层次多孔支架在生物矿化和骨再生方面具有显着优势。 尽管现有的评论文章广泛讨论了3D生物打印在骨组织工程中的应用,但大多数主要关注材料选择和过程优化,对挑战和潜在临床应用的潜在障碍有限分析。 这些评论通常会忽略3D生物打印与创新的生物材料和个性化结构设计相结合时如何应对骨组织工程中当前的挑战。 此外,本文探讨了如何创新Gao等。(2022)证明,通过低温打印产生的层次多孔支架在生物矿化和骨再生方面具有显着优势。尽管现有的评论文章广泛讨论了3D生物打印在骨组织工程中的应用,但大多数主要关注材料选择和过程优化,对挑战和潜在临床应用的潜在障碍有限分析。这些评论通常会忽略3D生物打印与创新的生物材料和个性化结构设计相结合时如何应对骨组织工程中当前的挑战。此外,本文探讨了如何创新回应,本文提供了3D生物打印的临床应用的全面摘要,分析了诸如印刷材料的可控降解性,与骨组织的机械兼容性以及植入后生物相容性的问题。
T2DM,因为它们在调节血糖水平方面具有显著的功效,而且不会增加低血糖发作或体重增加的风险( Drucker 和 Nauck,2006;Nauck,2016)。此外,各种大规模心血管结果试验 (CVOT) 的良好结果表明,GLP-1RA 可以减轻心血管风险较高的 T2DM 患者发生重大不良心血管事件 (MACE) 的风险( Marso et al., 2016a;Marso et al., 2016b;Hernandez et al., 2018;Pfeffer et al., 2015;Holman et al., 2017;Husain et al., 2019;Gerstein et al., 2019)。由于这些有利的特性,GLP-1RA 已获得权威指南的认可( Marx 等人,2023 年;2024 年),成为 2 型糖尿病患者的重要治疗选择,尤其是那些已有动脉粥样硬化性心血管疾病或心血管风险较高的患者。然而,多年来,人们一直担心 GLP-1 RA 对胰腺的影响。根据观察数据,2011 年的一份报告强调,使用肠促胰岛素治疗的患者患胰腺炎和胰腺癌的风险增加( Elashoff 等人,2011 年),促使美国食品药品监督管理局 (FDA) 就 GLP-1 RA 对胰腺的安全性发出警告( Administration,2013 年)。病例报告回顾(Franks 等人,2012 年)进一步加剧了人们对 GLP-1RA 对胰腺的潜在不良影响的担忧,导致胰腺酶升高和 AP。一项大型随机对照试验的荟萃分析研究了基于肠促胰岛素的疗法与 AP 之间的关联,显示与传统疗法相比,使用这些药物时发生 AP 的可能性高 82%(95% CI,1.17 – 2.82)(Roshanov 和 Dennis,2015 年)。虽然最近发表的几项 CVOT 荟萃分析表明,GLP-1RA 与胰腺炎之间没有这种关联(Singh 等人,2020 年;Cao 等人,2020 年)。尽管如此,此类研究也存在重大缺陷,包括平均随访时间相对较短(RCT 中不到 2 年)、患者队列选择不当以及样本量有限。在本研究中,我们回顾了已发表的文献,并分析了美国食品药品管理局不良事件报告系统 (FAERS) 数据,以调查 GLP-1 RA 治疗中 AP 的发生率。我们的目标是提供 GLP-1 RA 诱发的 AP 的全面临床描述,并确定现实环境中 AP 和 GLP-1 RA 之间存在安全信号。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
摘要:能源供应问题已成为重要的社会问题,因此,结合可再生能源提高微电网系统的稳定性,提出一种光伏混合电网控制系统。基于直驱风力发电系统和光伏发电系统的运行原理,提出了一种风光混合微电网的直流电压源控制策略,并通过实验验证了其有效性。在混合微电网在风速突变时的动态响应中,t=6s后风速发生变化,光伏发电系统的有功功率从6200W降至5500W。然后,分析了微电网系统的重要参与因素,并随着特征值运动轨迹的变化,将光伏发电系统的直流电压参数优化至2e-3,验证了所提控制系统的有效性和实用性。
Xiaolong Wang是加州大学圣地亚哥分校ECE系的助理教授,也是NVIDIA Research的客座教授。 他获得了博士学位。卡内基梅隆大学的机器人技术。 他的博士后培训是在加利福尼亚大学伯克利分校的。 他的研究重点是计算机视觉和机器人技术之间的交集。 他的特定兴趣在于从视频和物理机器人交互数据中学习视觉表示。 这些综合表示形式用于促进类似人类的机器人技能的学习,以推广机器人在真实物理世界中有效与广泛的对象和环境有效互动。 他是J. K. Aggarwal奖,NSF职业奖,Intel Rising明星奖和索尼,亚马逊,Adobe和Cisco的研究奖。Xiaolong Wang是加州大学圣地亚哥分校ECE系的助理教授,也是NVIDIA Research的客座教授。他获得了博士学位。卡内基梅隆大学的机器人技术。他的博士后培训是在加利福尼亚大学伯克利分校的。他的研究重点是计算机视觉和机器人技术之间的交集。他的特定兴趣在于从视频和物理机器人交互数据中学习视觉表示。这些综合表示形式用于促进类似人类的机器人技能的学习,以推广机器人在真实物理世界中有效与广泛的对象和环境有效互动。他是J. K. Aggarwal奖,NSF职业奖,Intel Rising明星奖和索尼,亚马逊,Adobe和Cisco的研究奖。
[16] Philip Brown,Konstantin Semeniuk,Diandian Wang,Bartomeu Monserrat,Chris J. Pickard和F. Malte Grosche。“在准碘的宿主 - 圈结构中强耦合超导性”。:科学进展4.4(2018),EAAO4793。doi:10。1126 / SCIADV。 AAO4793。 url:https: / / www。 science.org/doi/abs/10.1126/sciadv.aao4793。1126 / SCIADV。AAO4793。url:https: / / www。science.org/doi/abs/10.1126/sciadv.aao4793。
图 3 A. 用格列西拉西、JAB-3312 或二者联合处理 SW837 细胞 2 小时后,p-ERK 的蛋白质印迹分析。B. 格列西拉西与 JAB-3312 联合用于携带 KRAS G12C 突变的一组 CDX 和 PDX 模型的体内疗效。JAB-3312:SW837 和 MIA PaCa-2 中为 0.5 mg/kg;CR6243、CR6256 和 LU6405 中为 1 mg/kg。格列西拉西:MIA PaCa-2 中为 3 mg/kg;SW837 中为 10 mg/kg;CR6243、CR6256 和 LU6405 中为 100 mg/kg。联合用药中,JAB-3312 剂量为 0.5 mg/kg,格列西拉西与单药剂量相同。 C. 在 LU6405 异种移植中,绘制了肿瘤生长随治疗时间的变化。D. 在 LU6405 异种移植中,分别通过 IHC 和 qPCR 评估 41 天联合治疗后 FFPE 组织的 p-ERK 水平和 DUSP6 mRNA 表达。E. 显示了代表性 IHC 图像(放大 200 倍)。显示了平均肿瘤体积 ±SEM。
骨髓增生异常综合征 (MDS) 是一组异质性慢性血液系统恶性肿瘤,其特征是骨髓造血功能受损和造血功能低下,以及进展为急性髓系白血病 (AML) 的可变风险。MDS 是由复杂的基因突变组合驱动的,导致临床表型和结果的异质性。遗传学研究已经能够识别出一组具有复发性突变的基因,这些基因是 MDS 发病机制的核心(Chiereghin 等人,2021 年)。DNA 甲基化对于印记、X 失活和多能或组织特异性基因的沉默至关重要,从而调节胚胎发育。它也是维持分化细胞中染色体稳定性和通过抑制转座子和重复元件的插入来防止突变所必需的。因此,这些表观遗传标记的无法维持和异常的DNA甲基化模式的建立与某些蛋白质的低表达或过表达有关,最终导致各种病理(Gros et al.,2012)。因此,DNA甲基化抑制剂可以有效治疗MDS。目前临床上应用最广泛的甲基化抑制剂是阿扎胞苷(AZA)和地西他滨(DAC)(Sekeres and Taylor,2022)。研究表明,阿扎胞苷和地西他滨在MDS等慢性血液系统恶性肿瘤的治疗中起着非常重要的作用。关于其作用机制,学术界存在多种假说,其中“DNA甲基转移酶活性受到抑制,导致抑癌基因低甲基化和抑癌基因表达上调”的观点被广泛认可。事实上,DNA甲基化抑制剂往往作用于全基因组水平,其整体影响不仅包括引起抑癌基因去甲基化、上调抑癌基因表达,从而发挥治疗作用,还可能包括诱导致癌基因去甲基化,从而导致致癌基因上调,产生致病作用。因此,在MDS的治疗中,DNA甲基化抑制剂治疗的潜在“先天不足”在于,在去甲基化抑癌基因的同时,也上调了致癌基因的表达,不仅能治疗疾病,还带有极高的致病风险(Liu et al.,2022)。根据现有资料,DNA甲基化抑制剂在骨髓增生异常综合征和急性髓系白血病患者中的疗效也远低于临床预期,部分患者对该类药物无反应,少数患者在DNA甲基化抑制剂治疗失败后平均生存期不足半年,而致癌基因的上调可能是重要原因,这表明去甲基化治疗的适用人群有限,临床需要开展更有针对性的群体治疗。更重要的是,虽然两者都已被批准用于临床治疗,但目前比较两者引起的不良反应的异同点的研究较少。本研究检索到美国食品药品监督管理局(FDA)批准的两种治疗MDS的去甲基化药物:阿扎胞苷和地西他滨。这两种治疗药物表现出相似的疗效特征。截至2020年7月31日,根据使用马尔可夫链蒙特卡洛方法对网络进行荟萃分析
spirobs:对数螺旋形机器人,用于遍及尺度的多功能抓握Zhanchi Wang,1 Nikolaos M. Freris,1,3, *和XI Wei 2,** 1计算机科学技术学院,中国科学技术大学,中国,Hefei,Anhui,Anhui,Prc,Prc,230026。2中国科学技术大学化学与材料科学学院,Hefei,Anhui,Prc,230026 3 Lead Contact *通信:nfr@ustc.edu.cn。 **通信:wxi@ustc.edu.cn。 总结实现具有生物学上可比灵活性和多功能性的软操作器通常需要仔细选择材料和驱动以及其结构,感知和控制的细心设计。 在这里,我们报告了一类新的软机器人(螺纹),该机器人在形态上复制了在自然附属物中观察到的对数螺旋模式(例如,章鱼臂,大象躯干等)。 这允许在不同尺度和快速廉价的制造过程中建立共同的设计原理。 我们进一步提出了一个受章鱼启发的抓斗策略,可以自动适应目标对象的大小和形状。 我们说明了螺旋罗的敏捷性,以及抓紧大小的物体的能力,其大小多于两个以上的数量级,并且自重的260倍。 我们通过另外三种变体演示可伸缩性:微型抓手(MM),一个长时间的操纵器和一系列可以纠结各种物体的螺旋体。 这些附件能够具有显着的运动复杂性,并提供各种重要功能,例如猎物捕获,运动,操纵和防御。2中国科学技术大学化学与材料科学学院,Hefei,Anhui,Prc,230026 3 Lead Contact *通信:nfr@ustc.edu.cn。**通信:wxi@ustc.edu.cn。总结实现具有生物学上可比灵活性和多功能性的软操作器通常需要仔细选择材料和驱动以及其结构,感知和控制的细心设计。在这里,我们报告了一类新的软机器人(螺纹),该机器人在形态上复制了在自然附属物中观察到的对数螺旋模式(例如,章鱼臂,大象躯干等)。这允许在不同尺度和快速廉价的制造过程中建立共同的设计原理。我们进一步提出了一个受章鱼启发的抓斗策略,可以自动适应目标对象的大小和形状。我们说明了螺旋罗的敏捷性,以及抓紧大小的物体的能力,其大小多于两个以上的数量级,并且自重的260倍。我们通过另外三种变体演示可伸缩性:微型抓手(MM),一个长时间的操纵器和一系列可以纠结各种物体的螺旋体。这些附件能够具有显着的运动复杂性,并提供各种重要功能,例如猎物捕获,运动,操纵和防御。关键字柔软的机器人,对数螺旋,多尺度设计,软机器人握把介绍某些动物具有细长,灵活的附属物,范围从海马长度的几厘米和Chameleons的前尾尾巴1,2到超过一米的章鱼臂和大量的off臂和大头臂和大头脑trunks trunk trunks trunks 3,4。通过利用软材料或合规机制5-7,这是设计和构建柔软连续操作器的灵感来源。尽管机器人已经成功地重现了此类机器人系统中的柔性变形,并且在处理脆弱或不规则形状的物体8,安全的人类机器人互动任务9-11,医疗应用12,13等方面表现出了巨大潜力,但生物学示例在脱氧和敏捷性方面仍然超过了特大工程。例如,大象树干可以包裹直径为3厘米的胡萝卜,而它也可以抓住和堆叠300千克的树桩,直径超过直径14。章鱼手臂可以伸出手,并在次秒时间尺度上捕获鱼。
9. Xu, Z.; Li, H.*; Liu, Y.; Wang, K.; Wang, H.; Ge, M.; Xie, J.; Li, J.; Wen, Z.; Pan, H.; Qu, S.; Liu,