摘要:本综述研究旨在探讨利用工业废料作为金属基复合材料 (MMC) 制造中的增强材料的可能性,并评估相关的环境效益。本研究重点研究了两组不同的废料:用粉煤灰增强的金属基复合材料和由不同种类的工业废料生产的复合材料。审查了技术和性能相关数据,以评估这些废料在 MMC 生产中的潜力。研究结果表明,粉煤灰增强金属基复合材料表现出优异的物理和机械性能,使其非常适合各种应用,特别是在汽车领域。这项研究强调了进一步研究的必要性,以创新具有改进性能的先进材料,同时减轻环境污染。总体而言,这项研究展示了利用工业废料作为 MMC 生产中的增强材料的潜力,并强调了这种方法对未来先进材料发展的重要性。
本研究旨在利用工业废料,如发泡聚苯乙烯包装废料 (EPS) 和废旧轮胎废料,生产出一种新的复合材料。新型复合材料 RTPC(橡胶轮胎聚苯乙烯复合材料)是废旧轮胎中的橡胶颗粒作为增强材料,以及通过回收 EPS 和汽油获得的基质的混合物。在本研究中,考虑了几种基质/增强材料重量比例(25%、30% 和 35%)和几种增强材料粒度(2-3、3-4 和 4-5 毫米)。进行了物理、机械和热特性分析,以确定复合材料的密度、弯曲模量、最大应力和热导率。根据得到的结果,得到的 RTPC 材料被认为是一种密度在 500 到 600 kg/m 3 之间的轻质材料。 RTPC 材料的热特性测试还表明,RTPC 是一种绝缘材料,导热系数在 0.22 至 0.23 W/mK 之间。另一方面,三点弯曲测试表明,RTPC 材料的弯曲性能较差。RTPC 材料可用作建筑施工领域的良好隔热材料。如果 RTPC 材料的机械性能得到改善,则可将其用作夹层结构中的结构部件,用于其他应用。
抽象背景:质量指标经常用于衡量生命尽头的护理质量。在生命结束时,是否可以可靠地应用于常规收集的数据时,是否可以可靠地应用了潜在的过度处理的质量指标(即,当风险大于福利时)是否尚不确定。本研究旨在确定出版文献生命尽头过度治疗的质量指标,并在死于固体癌症的老年人中投入暂定的患病率。材料和方法:回顾性队列研究,包括所有老年人(65岁)在2013年1月1日至2015年12月31日在瑞典(N¼54,177)之间死于固体癌症的死者(65岁)。来自国家死亡原因的个人数据与总人口登记册,国家患者登记册和瑞典处方药登记册的数据有关。质量指标用于生命的最后一个和三个月。结果:从文献中确定的总共有145个质量指标中,有82(57%)在瑞典的常规行政和医疗保健数据中可能可操作。无法识别的程序和医院药物治疗是52%的被排除指标的原因。在82个可操作的指标中,有67个重叠概念。基于其余15个独特的指标,我们暂时估计,总体而言,约有三分之一的死者接受了至少一种治疗方法或程序,指示他们在生命的最后一个月中“潜在过度治疗”。结论:由于缺乏捕获护理程序的手段,瑞典的常规行政和医疗保健数据中,几乎一半的过度治疗指标无法衡量。我们的初步估计表明,潜在的过度治疗可能会影响死亡附近的癌症欺骗的三分之一。但是,应开发和验证常规收集数据的特定用途的潜在过度治疗的质量指标。
正在面临着浪费的产生,并且伴随着处理这种废物的问题。由于农业和农业领域的活动增加,产生了大量的生物质废物,这导致了环境危害和废物管理问题。在另一种情况下,由于建筑物在整个白天直接暴露于太阳辐射,这会增加建筑物外部和内部的温度,因此冷却室内建筑环境的能耗很高。大多数低中等成本的住房方案都是使用金属屋顶覆盖物构建的,而没有提供屋顶隔热层,从而导致室内温度上升并产生不舒服的环境。此外,现有在市场上用于屋顶绝缘的材料,使用可能损害人类健康的无机合成材料。该研究旨在调查农业废物在生产屋顶板绝缘材料中的潜在用途,这些材料可以为农业废物提供经济价值,减少环境问题并提供环保,可持续的建筑材料。在这项研究中,这些农业废物以不同的比例组合为50%的单个纤维,例如带有椰子壳的甘蔗甘蔗渣,带有中果纤维的空水果束,椰子壳,带有空的水果束,甘蔗渣和含有Mesocarp纤维的甘蔗。样品是使用热压机制造的,并进行了各种物理和机械测试,涉及肿胀的厚度,破裂模量和导热率。发现的发现表明,空的水果束和中果纤维的混合纤维达到了所有标准,例如密度(427 <500kg/m 3);肿胀的厚度(19 <20%);破裂模量(514 <800PSI),导热率(0.0856 <0.25 W/m.k)符合每项进行的每个实验室测试中的标准要求。这项研究的结果表明,空的水果束和中果纤维是生产屋顶板热绝缘的潜在材料。但是,需要修改废物的物理和机械性能以实现卓越的性能,并准备在市场中提供。本研究与政府一致
采用溶剂铸造法,以铁屑废料为填料,开发聚苯乙烯复合材料,旨在提高机械、晶体学和微观结构性能,以满足特定用途。根据 ASTM D638-10 标准进行拉伸试验。还进行了 X 射线衍射 (XRD) 分析和微观结构分析。杨氏模量随填料浓度 (0 – 15 wt%) 的增加而增加 (从 335.2 N/mm 2 增加到 1131.3 N/mm 2 ),断裂伸长率则反之亦然 (从 4.9 mm 增加到 1.6 mm)。XRD 显示,铁屑颗粒和聚苯乙烯基树脂 (PBR) 基质之间存在良好的结构相互作用。该复合材料分别结合了聚苯乙烯和铁屑的无定形和晶体性质。也没有观察到化学反应,但聚苯乙烯基体中形成了协同结构增强。微观结构分析表明,铁屑颗粒在聚苯乙烯基体中分散性良好,分布均匀;填料质量分数为15%的复合材料界面黏附性最好,颗粒-基体体系的混合比例适宜。
太阳能无疑是清洁、可再生和环保的能源,但它在地球上的分布并不均匀。饮用水也是如此。在我们的地球上,有些地区缺乏饮用水,这就是为什么太阳能蒸馏是解决这一问题最有利的方法之一。在偏远地区,有时很难找到饮用水。当地居民被迫寻找一种将污水转化为饮用水的解决方案。污水的太阳能蒸馏和太阳能蒸馏器的建造一直是许多科学实验室的研究对象 (Sadasivuni et al ., 2020; Panchal et al ., 2020; Khechekhouche et al ., 2020a; Khechekhouche et al ., 2019a)。在偏远地区使用的太阳能蒸馏器的产量相当低,这就是为什么许多研究试图通过结合其他能源系统来提高这种性能,例如平板太阳能集热器、抛物面聚光器(Wang 等人,2022 年)、圆柱形抛物面聚光器(Essa 等人,2022 年)、光伏(Hansen 等人,2021 年)和许多其他系统。其他研究使用了不太复杂和更简单的方法,并通过改变太阳能蒸馏器的厚度、角度或玻璃盖数量(Cherraye 等人,2020 年;Panchal,2016 年;Khechekhouche 等人,2021 年,Khechekhouche 等人,2019b 年;Khechekhouche 等人,2017 年)。太阳能蒸馏器实验使用了外部和内部折射器,以提高设备的性能 (Khechekhouche et al ., 2020b)。其他人则尝试冷却蒸馏器的玻璃盖以加速蒸发 (Khan et al ., 2021)。
AB Assembly Bill ADC Alternative Daily Cover APCD Air Pollution Control District AQMD Air Quality Management District ARB Air Resources Board ATSDR Agency for Toxic Substances and Disease Registry BAAQMD Bay Area Air Quality Management District BMP Best Management Practice CAAQS California Ambient Air Quality Standards Cal/OSHA California Occupational Safety and Health Administration (now the California Department of Industrial Relations, Division of Occupational Safety and Health) CalEPA California Environmental Protection Agency加利福尼亚州循环和资源回收局CES CALENVIROSCROSCER CFC CFC氯氟化碳鳕鱼鳕鱼化学氧需求CTMSR化学处理的金属切碎机残留CUPA CUPA CUPA CUPA认证统一计划委员 GIS Geographic Information System HVAC Heating, Ventilation, and Air Conditioning HWTS Hazardous Waste Tracking System IARC International Agency for Research on Cancer IGP Industrial General Permit ISRI Institute of Scrap Recycling Industries LFM light fibrous material mg/kg milligrams per kilogram mg/L milligrams per liter MRSH Materials that Require Special Handling MSR metal shredder residue n number of samples analyzed NAAQS国家环境空气质量标准
AAP 陆军弹药厂 ADNTs 氨基二硝基甲苯异构体 AP 高氯酸铵 APE 弹药 特殊设备 BRAC 基地重新调整和关闭 °C 摄氏度 CAD 弹药驱动装置 CBF 封闭燃烧炉 CBI 清洁燃烧点火器 CDC 封闭爆轰室 cm 厘米 CO2 二氧化碳 DAVINCH 真空集成室中弹药的爆炸 DDESB 国防部爆炸物安全委员会 demil 非军事化 DMMs 废弃军用弹药 DNTs 二硝基甲苯异构体 DoD 国防部 EDS 爆炸物销毁系统 EM 含能材料 EMCW 含能材料 受污染废物 EMS 环境管理支持公司 EPA 美国环境保护署 爆炸物 D 苦味酸铵 °F 华氏度 ft 英尺 FUDS 以前使用的国防基地 FY 财政年度 g 克 HMX 1,3,5,7-八氢-1,3,5,7-四硝基四氮唑 in 英寸 ICM 改进型常规弹药 iSCWO 工业超临界水氧化 kg 千克 lb 磅 LRIP 低速率初始生产 MDAS 记录为安全的材料 MDEH 记录为爆炸危险的材料 MIDAS 弹药物品处置行动系统 m 米 mm 毫米 MPPEH 可能存在爆炸危险的材料 MTU 移动处理装置 NCP 国家石油和危险物质污染应急计划 NDMA N-亚硝基二甲胺 NEW 爆炸物净重 NOx 一氧化二氮 NPL 国家优先事项清单 NSWC 海军水面作战中心
几十年来,露天焚烧和露天爆破(OB/OD)一直被用于处理/销毁高能危险废物。“高能”是指一类能够释放大量化学能的物质,例如军用弹药、烟花和汽车安全气囊推进剂。与封闭式替代技术相比,OB/OD 是一种不受控制的处理技术。1 与能够在释放前捕获和处理残留副产品的技术相比,高能危险废物的 OB/OD 是在露天进行的,处理副产品会直接排放到环境中(图 1)。因此,通过排放颗粒物、不完全燃烧产物或爆炸物块,以及散布弹药和其他废弃物(排泄物)2 而造成的 OB/OD 相关污染和暴露,引发了人们对是否有可用于高能危险废物的替代处理技术的质疑。为了履行 EPA 监控 OB/OD 安全替代品持续开发进展的承诺,3 本报告介绍了已开发的替代处理技术,这些技术在许多情况下已被采用,以替代 OB/OD。
1991 年 3 月,美国环境保护署和美国能源部举办了一次研讨会,探讨了表征受危险化学品和/或放射性核素污染的异质废物的方法。废物规模大或成分各异的场地,包括垃圾填埋场和垃圾场,给试图收集代表性样本以促进场地清理决策的调查人员带来了严重困难。本文件作为研讨会记录。它总结了目前使用的研究规划工具、采样设计策略以及现场和实验室方法,并确定了每种方法的优缺点。此外,还确定了可从方法研究或开发或采用新方法中受益的领域。汇集了相关的监管定义,并补充了实用的工作定义。研究规划过程的讨论强调建立明确、合理的目标,以及决策者以及项目、现场和实验室专家的积极参与。异质废物表征的项目规划是一个迭代过程,每一步都建立在前几步获得的知识之上。有大量统计模型可能对表征这些场地非常有用,尽管只有少数模型得到了广泛应用。标准的环境 QA/QC 方法可以通过多种方式进行调整,以提高异质废物数据的质量。目前采用的现场方法多种多样。这些方法包括挖掘和手工分拣大型物体,以及用于远程表征或污染物筛选的复杂仪器方法。目前有几种有前途的现场技术正在开发中。这些技术强调非侵入性表征,因为出于对工人健康和安全的考虑,通常要求尽量减少与异质废物的接触。在实验室中,处理异质样品的三种基本策略是分离、均质化或分析整个样品。详尽记录样品的外观和状况以及样品制备方法是必不可少的。实验室废物管理和人员安全保障是处理异质废物时需要特别注意的领域。