本研究采用 DNA 条形码和形态学鉴定相结合的综合方法,阐明了马来西亚半岛 (PM) 专属经济区 (EEZ) 海洋鱼类的物种多样性。我们的重点是南海 PM 东海岸进行的底栖调查。我们重新评估了 16 个目和 41 个科的 93 个假定物种(92 个条形码形态种)的 475 个标本的多样性,其中包括两个 IUCN 易危物种。总共有两个物种 - Saurida isarankurai 和 Oxyurichthys auchenolepis - 作为新记录呈现,三个物种 - Nemipterus balinensoides、Gymnothorax reevesii 和 Synodus hoshinonis - 作为马来西亚水域的第一批基于标本的记录。细胞色素 c 氧化酶亚基 I ( COI ) 序列分析划定了 95 个一致的分子操作分类单位 ( MOTU ),超过了形态多样性。有趣的是,条形码分析显示,在一种形态上已鉴定的鱼类物种内存在几种 MOTU,种内和种间的遗传分歧均超过 2%,这表明物种群内存在相当大的种内遗传分歧,或者我们的数据集内存在形态上隐蔽的物种。这些发现凸显了物种划界的复杂性和遗传方法的价值。我们的研究为了解马来西亚半岛东海岸的海洋鱼类多样性提供了宝贵的见解,并通过 DNA 条形码增进了我们对生态系统的遗传多样性、分布和保护需求的理解。通过将 DNA 条形码与形态学相结合,我们为未来制定马来西亚海洋生物多样性保护和管理战略的研究提供了一个全面的框架。本研究生成的遗传条形码数据库的扩展将促进未来的分子分类学研究。
藻类盛开,导致海水变色,通常称为“红潮”。有害的藻华(HAB)是指某些类型的藻类在水生环境中的快速和过度生长,例如淡水和海洋生态系统,对水生生物和人类产生不利或有害后果。Habs如果污染饮用水,或者人们食用暴露于这些毒素的海鲜,则会对人类健康构成风险。HAB的关键特征包括藻类过度生长和毒素产生。HAB涉及异常浓度的藻类,通常会产生对水的可见变色。过度生长通常是由诸如养分富集(例如氮和磷),温暖温度和阳光等因素所促进的。导致有害藻华的兴起的最关键因素被认为是低氮/磷比率和温度升高。
海洋生态系统是我们星球上最大的水生生态系统,维持了整个世界生物多样性的近50%。海洋和陆地环境依赖于各种生态系统,例如潮间带,潮汐区,深海,珊瑚礁,盐沼,河口,河口,泻湖和红树林,这对于其可持续性至关重要。藻类是自养植物,主要生活在水中,并有许多不同类型的植物,从衣原体,小球藻和硅藻是单细胞生物的,到fucus和sargassum,它们是多细胞生物的。海洋藻类的分类包括两个主要类别:海洋微藻和海洋大藻类。海洋微藻,通常称为浮游植物,仅在使用显微镜的情况下观察到。海洋大型藻类,也称为海藻,水植物或水生植物,涵盖了所有类型的海洋藻类,它们在没有显微镜的无助的情况下是可观察到的(Ranjith等,2018)。
由于商业饮用水的成本上涨,居民(尤其是在农村地区)越来越依赖自流井水,而自流井水通常是未经处理的,并且没有经常测试是否有损坏。这可能导致摄入对抗生素耐药性的微生物的摄入风险更高。因此,这项研究的重点是从菲律宾Losbaños,菲律宾的Losbaños中检测出来自选定Barangays(Bayog,Malinta和Mayondon)的自流井水样品的粪便(特别是大肠杆菌)。分离的大肠杆菌以获得抗菌素耐药性。使用多管发酵法确定,在30个水样中,大肠菌群的八个水样呈阳性。在八个样品(MY2-2,ML2-3和ML2-4)中,有三个获得了大肠杆菌分离株,如通过表型和分子表征所识别的。使用磁盘扩散测定法,在分离株中鉴定出抗生素头孢唑酮,Meropenem,loxacinem和甲氧苄啶磺胺甲恶唑的耐药模式。的结果表明,MY2-2对头孢曲松,MeropeNem和甲氧苄啶磺胺甲氧唑具有抗性。 ML2-3对头孢唑酮和MeropeNem具有抗性,而ML2-4对所有四种抗生素具有抗性。聚合酶链与引物检测到TEM基因的反应,这是一种扩展的β-内酰胺酶基因,表明分离株对氨苄西林和青霉素具有抗性。表型和分子方法的结果表明分离株具有多药耐药性。根据家庭访谈,隔离了MY2-2的自流井水被10个家庭用来饮酒。因此,地方政府部门应定期监测自流井水的微生物质量,进行教育和信息运动,以了解可以从消耗不洁的水中染上的疾病,并确保可以使用饮用水,尤其是对于没有净化水的家庭。
摘要:源自工业,农业和城市来源的酚类化合物可以渗入流水,对水生生物,生物多样性以及损害饮用水质量的不利影响,对人类构成潜在的健康危害。因此,监测和减轻流水中酚类化合物的存在对于保护生态系统的影响和保护公共卫生至关重要。这项研究探讨了基于用石墨烯(GPH)(GPH),Poly(3,4-乙基二苯乙烯)(PEDOT)(PEDOT)和酪氨酸酶(TY)修饰的屏幕打印电极(SPE)的创新传感器的开发和性能,设计用于水分析,专注于制造过程和所获得的耗载结果。拟议的生物传感器(SPE/GPH/PEDOT/TY)旨在达到高度的精度和灵敏度,并允许有效的分析回收率。特别注意修改元素组成的制造过程和优化。这项研究强调了生物传感器作为水分析的有效且可靠的解决方案的潜力。用石墨烯,PEDOT聚合物的合成和电聚合沉积和酪氨酸酶固定的修饰有助于获得高性能和稳健的生物传感器,从而提出了监测水生环境质量的有希望的观点。生物传感器的灵敏度增强,可促进河水样品中的检测和定量。分析恢复也是一个重要方面,生物传感器提出一致且可重复的结果。关于电分析实验结果,使用该生物传感器获得的检测极限(LOD)对于所有酚类化合物(8.63×10-10-10-10-10 m for Catechol,7.72×10-10 m均为3-甲氧基毒素的7.72×10-10 m,对于4-甲基氧气的3--氧化氧气和9.56×10 m的能力,可用于4-甲基元素的均匀分数,适合4-甲基元素的特征,均匀均匀跟踪复合参数。此功能可显着提高生物传感器在实际应用中的可靠性和实用性,使其适合监测工业或河水。
摘要。苏门答腊岛有589种淡水鱼,其中58种是特有的。Jambi省排名第二,是地方性最高的省份,苏门答腊河流最长的河流经过六个地区,其中一个是Batanghari Regency。Muara Bulian区是Batanghari Regency唯一的子地区,整个村庄都被八打河河所穿越。这项研究旨在揭示Muara Bulian大陆水中鱼类的生物多样性。四个研究站代表了不同的栖息地,即八打河河,布莱恩河,莱坦湖和特拉泰的沼泽。采样以获取不同的样品。这项研究的结果表明,来自523个个体的鱼类的多样性,有51种,32种,18个家庭,8个订单包括2种(C. kapuasensis和C. pseudoleiacanthus)作为Jambi Province的新记录,其中包括1种受政府保护的物种,另一种是引言或本地物种。以鱼样形式的研究数据已存放在属于Bogor National Research and Innovation Agency(BRIN)的动物学博物馆博物馆(MZB),该博物馆数字为MZB 26811至MZB26834。
摘要:随着锂离子电池的使用正在扩散,大型存储系统(固定存储容器等)中的事件或大型电池和电池存放(仓库,回收商等)。)经常会导致火灾定期发生。水仍然是解决此类电池事件的最有效的灭火剂之一,通常需要大量数量。由于电池包含各种潜在有害的成分(金属及其氧化物或盐,溶剂等)和热跑诱导的电池事件伴随着复杂且潜在的多稳态排放(同时包含气体和颗粒),应考虑并仔细评估火径流水对环境的潜在影响。本文提出的测试重点是分析用于在热失控下喷洒NMC锂离子模块的径流水的组成。强调,用于消防的水很容易含有许多金属,包括Ni,Mn,Co,Li和Al,与其他碳质物种(烟灰,油粉)混合,有时在电解质中使用的溶剂有时未沉积。与PNEC值相比,污染物浓度的外推表明,对于大规模事件,径流水可能对环境有可能危害。
气候变化正在极大地改变加利福尼亚的水资源,从而导致天气和水文学的变化更大。通过加强del,积雪和融雪的延伸,延长的干旱正在减少,季节性径流模式正在变化。水管理的所有部门都面临气候变化带来的风险增加。在圣华金河谷,随着气候变化的态度,长期的水管理挑战正在加剧。在过去的十年中,水和洪水经理都经历了两种极端的经历 - 两年创纪录的潮湿年份,最干燥的三年和四年干旱记录下来。随着气候继续变暖,干旱和洪水的发生和严重程度可能会增加。即使在当前的气候条件下,包括气候变化加剧的地下水透支,梅塞德河流域(默塞德流域)即使在当前的气候条件下,也已经面临慢性水管理挑战。孤立的计划和分析方法,专注于单个水管理部门,不足以应对加利福尼亚州的21世纪水管理挑战,圣华金河谷(San Joaquin Valley)以及本研究的目的,默塞德(Merced)流域。应对这些挑战需要灵活的,多收益的协作解决方案,以改善洪水,供水和生态系统的弹性。
I.执行摘要II。湖泊细分市场和支流信息III。TMDL标准和分配IV。 环境水质趋势V.磷VI的土地覆盖分析和来源。 过去的实施和负载减少VII。 未来实施VIII。 图1。的自适应管理清单 湖泊细分市场的主要支流图2。 TMDL主要湖泊细分图3。 湖段总磷浓度趋势(1990 - 2019年)图4。 过去的实施项目(1995 - 2019年)图5。 英亩土地覆盖类型的湖泊段图6。 湖间分水岭的土地覆盖图7。 磷负载估算范围图8。 HUC 12分水岭估计的年磷载荷(kg/ear/年)图9. HUC 12分水岭的农业部门载荷(kg/ACE/年)图10。 Huc 12分水岭的森林扇区加载(kg/ACE/年)图11。 城市部门的加载(kg/acre/年)HUC 12流域图12. 化粪池扇区加载(kg/a英亩/年)HUC 12分水岭图13。 在尚普兰湖流域的纽约部分表1。 湖泊细分市场和主要支流的水质分类表2。 tmdl in -lake浓度标准表3。 纽约点的来源和非点源分配湖部门表4。 纽约点源和非点源减少湖泊段表5。 资助计划附录B。TMDL标准和分配IV。环境水质趋势V.磷VI的土地覆盖分析和来源。过去的实施和负载减少VII。未来实施VIII。图1。湖泊细分市场的主要支流图2。TMDL主要湖泊细分图3。湖段总磷浓度趋势(1990 - 2019年)图4。过去的实施项目(1995 - 2019年)图5。英亩土地覆盖类型的湖泊段图6。湖间分水岭的土地覆盖图7。磷负载估算范围图8。HUC 12分水岭估计的年磷载荷(kg/ear/年)图9.HUC 12分水岭的农业部门载荷(kg/ACE/年)图10。 Huc 12分水岭的森林扇区加载(kg/ACE/年)图11。 城市部门的加载(kg/acre/年)HUC 12流域图12. 化粪池扇区加载(kg/a英亩/年)HUC 12分水岭图13。 在尚普兰湖流域的纽约部分表1。 湖泊细分市场和主要支流的水质分类表2。 tmdl in -lake浓度标准表3。 纽约点的来源和非点源分配湖部门表4。 纽约点源和非点源减少湖泊段表5。 资助计划附录B。HUC 12分水岭的农业部门载荷(kg/ACE/年)图10。Huc 12分水岭的森林扇区加载(kg/ACE/年)图11。城市部门的加载(kg/acre/年)HUC 12流域图12.化粪池扇区加载(kg/a英亩/年)HUC 12分水岭图13。 在尚普兰湖流域的纽约部分表1。 湖泊细分市场和主要支流的水质分类表2。 tmdl in -lake浓度标准表3。 纽约点的来源和非点源分配湖部门表4。 纽约点源和非点源减少湖泊段表5。 资助计划附录B。化粪池扇区加载(kg/a英亩/年)HUC 12分水岭图13。在尚普兰湖流域的纽约部分表1。湖泊细分市场和主要支流的水质分类表2。tmdl in -lake浓度标准表3。纽约点的来源和非点源分配湖部门表4。纽约点源和非点源减少湖泊段表5。资助计划附录B。与TMDL标准相比,平均TP浓度表6。TP集中趋势的纽约主要支流趋势表7:尚普兰湖的有害藻华(2012 - 2019年)表8。国家资金摘要(1995 - 2019)表9。与TMDL分配表10相比HUC 12个子源源部门分析表11。废水设施TMDL废水分配和平均负载表12。废水设施分配交易表13。化粪池系统加载的参数和默认系数表14。估计季节性化粪池系统负载附录附录A。潜在的农业部门项目附录C.潜在的森林部门项目附录D.潜在的城市部门项目附录E.潜在的废水部门项目附录F.潜在的化粪池部门项目涵盖尚普兰湖盆地盆地计划的照片