简单摘要:先前的放射线研究已经解决了两类肿瘤分类问题(胶质母细胞瘤(GBM)与原发性CNS淋巴瘤(PCNSL)(PCNSL)或GBM相比转移)。但是,这种方法容易出现偏见,并排除其他常见的脑肿瘤类型。我们通过包括三种最常见的脑肿瘤类型(GBM,PCNSL和转移)来解决现实生活中的临床问题。我们使用不同的MRI序列组合研究了两个关键问题:基于肿瘤子区域(坏死,增强,水肿和联合增强的增强和坏死面罩)的性能变化,以及基于选择的分类符号模型/特征选择组合的性能指标。我们的研究提供了证据,表明基于放射素学的三类肿瘤分化是可行的,并且嵌入模型的性能要比具有先验特征选择的模型更好。我们发现,T1对比度增强是具有与多参数MRI相当性能的单个最佳序列,并且模型性能根据肿瘤子区域和模型/特征选择方法的组合而变化。
由于商业饮用水的成本上涨,居民(尤其是在农村地区)越来越依赖自流井水,而自流井水通常是未经处理的,并且没有经常测试是否有损坏。这可能导致摄入对抗生素耐药性的微生物的摄入风险更高。因此,这项研究的重点是从菲律宾Losbaños,菲律宾的Losbaños中检测出来自选定Barangays(Bayog,Malinta和Mayondon)的自流井水样品的粪便(特别是大肠杆菌)。分离的大肠杆菌以获得抗菌素耐药性。使用多管发酵法确定,在30个水样中,大肠菌群的八个水样呈阳性。在八个样品(MY2-2,ML2-3和ML2-4)中,有三个获得了大肠杆菌分离株,如通过表型和分子表征所识别的。使用磁盘扩散测定法,在分离株中鉴定出抗生素头孢唑酮,Meropenem,loxacinem和甲氧苄啶磺胺甲恶唑的耐药模式。的结果表明,MY2-2对头孢曲松,MeropeNem和甲氧苄啶磺胺甲氧唑具有抗性。 ML2-3对头孢唑酮和MeropeNem具有抗性,而ML2-4对所有四种抗生素具有抗性。聚合酶链与引物检测到TEM基因的反应,这是一种扩展的β-内酰胺酶基因,表明分离株对氨苄西林和青霉素具有抗性。表型和分子方法的结果表明分离株具有多药耐药性。根据家庭访谈,隔离了MY2-2的自流井水被10个家庭用来饮酒。因此,地方政府部门应定期监测自流井水的微生物质量,进行教育和信息运动,以了解可以从消耗不洁的水中染上的疾病,并确保可以使用饮用水,尤其是对于没有净化水的家庭。
摘要。苏门答腊岛有589种淡水鱼,其中58种是特有的。Jambi省排名第二,是地方性最高的省份,苏门答腊河流最长的河流经过六个地区,其中一个是Batanghari Regency。Muara Bulian区是Batanghari Regency唯一的子地区,整个村庄都被八打河河所穿越。这项研究旨在揭示Muara Bulian大陆水中鱼类的生物多样性。四个研究站代表了不同的栖息地,即八打河河,布莱恩河,莱坦湖和特拉泰的沼泽。采样以获取不同的样品。这项研究的结果表明,来自523个个体的鱼类的多样性,有51种,32种,18个家庭,8个订单包括2种(C. kapuasensis和C. pseudoleiacanthus)作为Jambi Province的新记录,其中包括1种受政府保护的物种,另一种是引言或本地物种。以鱼样形式的研究数据已存放在属于Bogor National Research and Innovation Agency(BRIN)的动物学博物馆博物馆(MZB),该博物馆数字为MZB 26811至MZB26834。
海洋碳储存是大气CO 2的主要水槽之一,被认为是过去冰川期间CO 2缩减的主要因素。物理和生物地球化学过程都控制着海洋中碳储存的能力。在更新世的冰川期间,大西洋南半球起源的大量深水群体已显示出可促进南大洋中的碳存储。但是,几乎没有研究过印度洋水质量的纬度延伸。在这项研究中,我们结合了印度洋西南部两个沉积物岩心的有孔虫εnd和底栖δ13c(MD96-2077,33°S,3781 m的水深度; MD96 - 2052,19o s,2627 m水深),以范围的范围内的既有型号又有范围的范围。最后630 Kyr。有孔虫εND和底栖δ13c的联合使用允许区分与水质量混合和水质量中的碳积累相关的δ13c变化。营养丰富的深水无法用南部采购水的比例增强来解释,在冰川时期内,核心地点比2700 m深,至少延伸至33°°s进入印度海洋。从海洋同位素阶段(MIS)14到MIS 10,冰川碳的存储逐渐增加,直到在极端冰川时期达到其最高容量MIS 12和10。轨道强迫(100公斤偏心,41千钟倾斜),限制性空气交换和增强的海洋分层,在相对较低的偏心率和倾斜的时期内促进了较高的碳储存。此外,在MIS 10之后,在底栖δ13c和δ13c和δ18o核心MD96 - 2077的记录中观察到从100千克偏心率到41千摩尔的倾斜循环,并且Sea-Ice覆盖了从Agulhas Plachap plaplaup plapplas corepore Core核心位置的Sea-Ice覆盖变化。
为了帮助评估鲜为人知的伪虎鲸 Pseudorca crassidens 在澳大利亚北部海域的分布、居住地、种群规模和结构(以及保护状况),我们对目击情况、基于卫星遥测的运动模式和遗传学进行了研究。目击数据表明,伪虎鲸是澳大利亚北部沿海地区的常年居民。被卫星标记的动物在浅海水域度过了很长一段时间,没有被标记的动物离开大陆架。与卡奔塔利亚湾被标记的个体相比,在阿拉弗拉海/帝汶海被标记的个体所访问的区域缺乏空间重叠,这表明澳大利亚北部沿海水域可能存在不止一个种群。在 1600 公里长的海岸线上采集的所有 14 个基因样本都拥有相同的新发现的线粒体控制区单倍型,即单倍型 45。值得注意的是,单倍型 45 与全球所有之前公布的假虎鲸单倍型不同,并且与濒临灭绝的夏威夷群岛主要岛屿假虎鲸种群的两种单倍型最为相似。根据这些结果以及被标记的假虎鲸的近期移动记录的证据,澳大利亚北部的假虎鲸在人口统计学上似乎与近海种群无关。现在需要进一步评估种群保护状况。
本研究采用 DNA 条形码和形态学鉴定相结合的综合方法,阐明了马来西亚半岛 (PM) 专属经济区 (EEZ) 海洋鱼类的物种多样性。我们的重点是南海 PM 东海岸进行的底栖调查。我们重新评估了 16 个目和 41 个科的 93 个假定物种(92 个条形码形态种)的 475 个标本的多样性,其中包括两个 IUCN 易危物种。总共有两个物种 - Saurida isarankurai 和 Oxyurichthys auchenolepis - 作为新记录呈现,三个物种 - Nemipterus balinensoides、Gymnothorax reevesii 和 Synodus hoshinonis - 作为马来西亚水域的第一批基于标本的记录。细胞色素 c 氧化酶亚基 I ( COI ) 序列分析划定了 95 个一致的分子操作分类单位 ( MOTU ),超过了形态多样性。有趣的是,条形码分析显示,在一种形态上已鉴定的鱼类物种内存在几种 MOTU,种内和种间的遗传分歧均超过 2%,这表明物种群内存在相当大的种内遗传分歧,或者我们的数据集内存在形态上隐蔽的物种。这些发现凸显了物种划界的复杂性和遗传方法的价值。我们的研究为了解马来西亚半岛东海岸的海洋鱼类多样性提供了宝贵的见解,并通过 DNA 条形码增进了我们对生态系统的遗传多样性、分布和保护需求的理解。通过将 DNA 条形码与形态学相结合,我们为未来制定马来西亚海洋生物多样性保护和管理战略的研究提供了一个全面的框架。本研究生成的遗传条形码数据库的扩展将促进未来的分子分类学研究。
摘要:由于人为活性,海洋的汞含量(HG)含量增加了两倍,尽管黑海洋(> 200 m)已成为重要的HG储层,但有毒和生物蓄积的甲基汞(MEHG)的浓度很低,因此很难测量。因此,当前对深海中HG周期的理解受到严格的数据限制,控制MEHG的因素及其转换率仍然很大程度上未知。通过分析52个全球分布的巴基拉质深元素宏基因组和26个来自Malaspina Expedition的新元转录组,我们的研究揭示了在全球浴类海洋中(〜4000 m深度)中细菌编码基因Mera和Merb的广泛分布和表达。这些基因与Hg II还原和MEHG脱甲基化相关的基因在粒子附着的分数中尤为普遍。此外,我们的结果表明,水质量年龄和有机物组成塑造了拥有Mera和Merb基因的结构,这些群落和Merb基因生活在不同的粒径分数,其丰度及其表达水平。命令的成员Corynebacteriales,Rhodobacterales,Alteromonadales,Oceanospirillales,Moraxelleles和Flavobacteriales是深海中包含Mera和Merb基因的主要分类参与者。这些发现,加上我们先前具有具有代谢能力降解MEHG的深层层流海洋的纯培养物分离株的结果,表明甲基汞脱甲基化和HG II还原可能发生在全球黑暗海洋中,这是生物圈中最大的生物组。关键字:汞,甲基汞,浴样,细菌脱甲基化,宏基因组,metatranscriptomes,mer基因■简介
作者:克拉拉菜单1,Laure Pecquerie 2,Cedric Bacher 3,Mathieu Doray 4,Tarek Hattab 5,5 Jeroen van der Kooij 6,Martin Huret 1 1 1 1解(生态系统动力学和可持续性) 6539 CNRS/UBO/IRD/IFREMER,LEMAR-IUEM,PLOUZANé,法国,10 3 Ifremer,Dyneco,dyneco,f-29280,法国Plouzané,法国4解码(生态系统动力学和可持续性)法国Sète的Ifremer和Ird 6环境,渔业和水产养殖科学中心,Lowestoft,英国,英国15通讯作者:Clara菜单,clara.menu@ifremer.fr,Ifremer Center Bretagne LBH,29280Plouzané20
[1] B. J. Kullberg,M。C。Arendrup,N。Engel。J. Med。 2015,373(15),1445。 [2] F. Bongomin,St.Gago,R。Oladele,D。W。Denning,J. 2017 Fungi,3,4。 [3] B. Halford,化学。 eng。 新闻2021,99,7。 [4] HH Kong,J。 A. City,2020 Science,368(6489),365。 [5] R. Rajendran,L。Sherriff,A。Sherriff,A。M。Johnson,M。F。Hanson,C。Williams,C。A。A. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. Ramage,Clin。 微生物。 感染。 2016,22(1),87。 D. R. Giaciobbe,A。E。E. [7]控制与预防。 Auris候选人。 https://www.cdc.gov/candidal/underx.html。 访问2021。 [8] J. A. Moderns,临床。 微生物。 感染。 2004,10(补充1),1。 [9] M. W. Pound,M。L。Townsend,V。Dimondy,D。Wilson,R。H。Drew,Med。 mycol。 2011,49(6),561。 [10] D. Maubon,C。Garnaud。 2014,40(9),1241。 [11] M. Canutonian Mass,F。GutierezRode,Infect。 dis。 2002,2(9),550。 M. C. Fisher,N。J. J. Hawkins,D。 [13]社论。 nat。 微生物。 2017,2(8),17120。 [14] A. G. Coach,A。R。Conery,R。J。Sims,第三,Nat。J. Med。2015,373(15),1445。 [2] F. Bongomin,St.Gago,R。Oladele,D。W。Denning,J. 2017 Fungi,3,4。 [3] B. Halford,化学。 eng。 新闻2021,99,7。 [4] HH Kong,J。 A. City,2020 Science,368(6489),365。 [5] R. Rajendran,L。Sherriff,A。Sherriff,A。M。Johnson,M。F。Hanson,C。Williams,C。A。A. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. Ramage,Clin。 微生物。 感染。 2016,22(1),87。 D. R. Giaciobbe,A。E。E. [7]控制与预防。 Auris候选人。 https://www.cdc.gov/candidal/underx.html。 访问2021。 [8] J. A. Moderns,临床。 微生物。 感染。 2004,10(补充1),1。 [9] M. W. Pound,M。L。Townsend,V。Dimondy,D。Wilson,R。H。Drew,Med。 mycol。 2011,49(6),561。 [10] D. Maubon,C。Garnaud。 2014,40(9),1241。 [11] M. Canutonian Mass,F。GutierezRode,Infect。 dis。 2002,2(9),550。 M. C. Fisher,N。J. J. Hawkins,D。 [13]社论。 nat。 微生物。 2017,2(8),17120。 [14] A. G. Coach,A。R。Conery,R。J。Sims,第三,Nat。2015,373(15),1445。[2] F. Bongomin,St.Gago,R。Oladele,D。W。Denning,J.2017 Fungi,3,4。[3] B. Halford,化学。eng。新闻2021,99,7。[4] HH Kong,J。A. City,2020 Science,368(6489),365。[5] R. Rajendran,L。Sherriff,A。Sherriff,A。M。Johnson,M。F。Hanson,C。Williams,C。A。A. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. Ramage,Clin。 微生物。 感染。 2016,22(1),87。 D. R. Giaciobbe,A。E。E. [7]控制与预防。 Auris候选人。 https://www.cdc.gov/candidal/underx.html。 访问2021。 [8] J. A. Moderns,临床。 微生物。 感染。 2004,10(补充1),1。 [9] M. W. Pound,M。L。Townsend,V。Dimondy,D。Wilson,R。H。Drew,Med。 mycol。 2011,49(6),561。 [10] D. Maubon,C。Garnaud。 2014,40(9),1241。 [11] M. Canutonian Mass,F。GutierezRode,Infect。 dis。 2002,2(9),550。 M. C. Fisher,N。J. J. Hawkins,D。 [13]社论。 nat。 微生物。 2017,2(8),17120。 [14] A. G. Coach,A。R。Conery,R。J。Sims,第三,Nat。[5] R. Rajendran,L。Sherriff,A。Sherriff,A。M。Johnson,M。F。Hanson,C。Williams,C。A。A. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. Ramage,Clin。微生物。感染。2016,22(1),87。 D. R. Giaciobbe,A。E。E. [7]控制与预防。 Auris候选人。 https://www.cdc.gov/candidal/underx.html。 访问2021。 [8] J. A. Moderns,临床。 微生物。 感染。 2004,10(补充1),1。 [9] M. W. Pound,M。L。Townsend,V。Dimondy,D。Wilson,R。H。Drew,Med。 mycol。 2011,49(6),561。 [10] D. Maubon,C。Garnaud。 2014,40(9),1241。 [11] M. Canutonian Mass,F。GutierezRode,Infect。 dis。 2002,2(9),550。 M. C. Fisher,N。J. J. Hawkins,D。 [13]社论。 nat。 微生物。 2017,2(8),17120。 [14] A. G. Coach,A。R。Conery,R。J。Sims,第三,Nat。2016,22(1),87。D. R. Giaciobbe,A。E。E.[7]控制与预防。Auris候选人。https://www.cdc.gov/candidal/underx.html。访问2021。[8] J.A. Moderns,临床。微生物。感染。2004,10(补充1),1。[9] M. W. Pound,M。L。Townsend,V。Dimondy,D。Wilson,R。H。Drew,Med。mycol。2011,49(6),561。[10] D. Maubon,C。Garnaud。2014,40(9),1241。[11] M. Canutonian Mass,F。GutierezRode,Infect。dis。2002,2(9),550。M. C. Fisher,N。J. J. Hawkins,D。[13]社论。nat。微生物。2017,2(8),17120。 [14] A. G. Coach,A。R。Conery,R。J。Sims,第三,Nat。2017,2(8),17120。[14] A. G. Coach,A。R。Conery,R。J。Sims,第三,Nat。修订版Discov。2019,18(8),609。 [15] E. Ferri,C。What,C。E. McKenna,Biochem。 Pharmacol。 2016,106,1。 F. Mietton,E。Ferri,M。Champel,N。Zala,D。Maubon,Y。 A. Kashemirov,M。Hull,M。Cornet,C。McKenna,J。Govin,C。Petosa,Nat。 公社。 2017,8,15482。 [17] C. Y. Wang,P。Filipaposole,趋势生物化学。 SCI。 2015,40(8),468。 [18]圣卡里亚斯(St. Callias),Y. P. Chhen,Discov。 今天,2011年,16(17 - 18),831。 [19] St. J. Macanoin,V。Gosu,St. Hong,St. Choi,Arch。 parm。 res。 2015,38(9),1686。 M. I. Walton,P。D. Eve,A。Hayes,M。R. Valenti,A。K. Haven Brandon,G。Box,A。Hallsworth,El Smith,K。J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J.2019,18(8),609。[15] E. Ferri,C。What,C。E. McKenna,Biochem。Pharmacol。2016,106,1。F. Mietton,E。Ferri,M。Champel,N。Zala,D。Maubon,Y。A. Kashemirov,M。Hull,M。Cornet,C。McKenna,J。Govin,C。Petosa,Nat。 公社。 2017,8,15482。 [17] C. Y. Wang,P。Filipaposole,趋势生物化学。 SCI。 2015,40(8),468。 [18]圣卡里亚斯(St. Callias),Y. P. Chhen,Discov。 今天,2011年,16(17 - 18),831。 [19] St. J. Macanoin,V。Gosu,St. Hong,St. Choi,Arch。 parm。 res。 2015,38(9),1686。 M. I. Walton,P。D. Eve,A。Hayes,M。R. Valenti,A。K. Haven Brandon,G。Box,A。Hallsworth,El Smith,K。J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J.A. Kashemirov,M。Hull,M。Cornet,C。McKenna,J。Govin,C。Petosa,Nat。公社。2017,8,15482。[17] C. Y. Wang,P。Filipaposole,趋势生物化学。SCI。 2015,40(8),468。 [18]圣卡里亚斯(St. Callias),Y. P. Chhen,Discov。 今天,2011年,16(17 - 18),831。 [19] St. J. Macanoin,V。Gosu,St. Hong,St. Choi,Arch。 parm。 res。 2015,38(9),1686。 M. I. Walton,P。D. Eve,A。Hayes,M。R. Valenti,A。K. Haven Brandon,G。Box,A。Hallsworth,El Smith,K。J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J.SCI。2015,40(8),468。 [18]圣卡里亚斯(St. Callias),Y. P. Chhen,Discov。 今天,2011年,16(17 - 18),831。 [19] St. J. Macanoin,V。Gosu,St. Hong,St. Choi,Arch。 parm。 res。 2015,38(9),1686。 M. I. Walton,P。D. Eve,A。Hayes,M。R. Valenti,A。K. Haven Brandon,G。Box,A。Hallsworth,El Smith,K。J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J.2015,40(8),468。[18]圣卡里亚斯(St. Callias),Y. P. Chhen,Discov。今天,2011年,16(17 - 18),831。[19] St. J. Macanoin,V。Gosu,St. Hong,St. Choi,Arch。parm。res。2015,38(9),1686。M. I. Walton,P。D. Eve,A。Hayes,M。R. Valenti,A。K. Haven Brandon,G。Box,A。Hallsworth,El Smith,K。J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J.
