The potential of TRISHNA for agro-hydrology and watershed management applications in India Detection of Flash drought and utilization of evapotranspiration for improved irrigation scheduling and performance evaluation UAV-based thermal imaging for high-resolution crop water condition monitoring: a futuristic spatial cal/val protocol for the TRISHNA mission Evaluation of satellite- based thermal anomalies for assessing crop risk due to mid-term heatwave使用基于高分辨率的无人机的热数据,对农场规模的葡萄园灌溉估算的对手进行了基于植被指数的蒸散分解和农作物水平衡模型水应力监测水应力监测。
致谢 第 3 页 简介和背景 第 4 页 流域描述 第 4 页 土地覆盖 第 4 页 大流域 第 6 页 流域的先前和当前研究/分析 第 9 页 评估和监测 第 9 页 视觉评估概述 第 9 页 视觉评估工作和结果 第 9 页 水质和大型无脊椎动物概述 第 13 页 水质和大型无脊椎动物工作和结果 第 15 页 鱼类调查概述 第 18 页 鱼类调查工作和结果 第 18 页 水生生物通道 (AOP) 概述 第 18 页 水生生物通道 (AOP) 工作和结果 第 19 页 主要前景概述 第 21 页 主要前景工作和结果 第 21 页 土路和碎石路概述 第 23 页 土路和碎石路工作和结果 第 23 页 独特而杰出流域/溪流的价值 第 25 页 关注领域和潜在冲突 第 26 页 建议和后续步骤 第 27 页 保护合作伙伴和可能的资金来源 第 29 页 总结/结论 第 31 页 参考文献 第 32 页 与流域保护相关的最佳管理措施资源清单 第 32 页 附录 第 33 页
vii。流域科学的重点是开发观察基础设施和进行生态水文模型,以量化和建模流域水文对气候变化,森林干扰和管理行动的反应。团队与利益相关者共同制作知识,通过长期监控为季节做出了贡献,并与其他团队合作就气候建模,水生态生态学,场景计划,基线社会和经济科学以及WYACT框架中的集成建模。
流域保护区 Hannah Riedl,水质专家 贡献者: 水质规划局标准和建模科 Eric Regensberger,水质模型师 Mike Suplee,水质科学家 流域保护区 Kristy Fortman,前流域保护区主管 Christy Meredith,水质专家 Dean Yashan,水质专家,已退休 标题页照片是苦根河在泉水流量大的情况下的样子。照片中,河岸茂盛的植被稳定了河岸,消散了洪水能量。 蒙大拿州环境质量部水资源保护局 1520 E. Sixth Avenue PO Box 200901 Helena, MT 59620-0901 建议引用:蒙大拿州环境质量部。2022 年。苦根河保护计划草案。蒙大拿州海伦娜:蒙大拿州环境质量部。
在1994年8月18日至23日期间,已经获得了大气响料,以表征Washita-94实验的小华盛顿分水岭上的风,温度和湿度曲线。该发射场位于美国177年以南3.2英里处,在极端西部格雷迪县的洛基福特以北约3英里处(98 E 5.19 N W; 34 E 50.43 N N)。该地点大约位于小地面上的小华盛顿河流集水区的中心(高度为434 m msl),位于新鲜的Hay Stubble田地,具有极好的曝光,并且可以欣赏到从西北,通过西部,穿过南部以及东北的全景。这个选址促进了在所有风度制度中在流域中心部分上合理地代表大气边界层状态的声音的获取。
水文,对地球表面的水运动,分布和质量的研究,在理解和管理水资源方面起着至关重要的作用。在水文学中,流域建模是一个关键领域,侧重于预测水如何流入特定地理区域。在流域建模的各种方法中,TopModel水文学从地形角度考虑了景观,从而洞悉了景观,从而洞悉了降水,地形和水文过程之间的复杂相互作用。在本文中,我们深入研究了TopModel水文学在理解和管理流域过程中的原理,应用和意义。Topmodel水文,“地形模型”的缩写,是模拟流域内水文过程的概念框架。在1970年代后期由基思·贝文(Keith Beven)和迈克·柯克比(Mike Kirkby)开发,这种方法通过认识到地形在控制景观中水通量的分布和时机中的关键作用来彻底改变了该领域[1]。
圣迪马斯实验森林 (SDEF) 中的贝尔峡谷数字模型使我们能够对该位置的流域特性进行深入的水文研究。我们使用 HEC‐HMS 软件中的 SCS 方法确定了 5、10、25 和 50 年重现期的流出量、累积降水量和土壤渗透量。我们已使用这些数据来缩放我们的物理模型,以准确描绘流域的特性。以下是图形和表格输入和结果:
关于汉隆溪及其子流域的研究很多。最早的研究之一是圭尔夫大学 1971 年进行的汉隆溪生态研究,该研究描述了当时的现状和未来发展的趋势,并提供了子流域边界内自然资源系统的范围清单。第二项研究是 Marshall Macklin Monaghan Limited & LGL Limited 于 1993 年进行的汉隆溪流域规划。这项研究由圭尔夫市发起,旨在确定保护和改善子流域宝贵自然资源所需的措施,并确定在为保护子流域而设立的限制范围内可以进行的开发水平。第三项值得注意的研究是 Planning & Engineering Initiatives Limited 于 2004 年进行的汉隆溪流域状况研究。圭尔夫市要求进行这项研究,以更新监测信息、确定当前趋势、评估汉隆溪流域计划中的管理策略的影响,并推荐一份五年监测计划。
保护效力伙伴关系 (CEP):CEP 是 DEQ、ODFW、俄勒冈州农业部 (ODA)、联邦自然资源保护局 (NRCS) 和 OWEB 之间的合作项目。CEP 旨在通过协作监测、评估和报告来描述累积保护和恢复行动在实现自然资源成果方面的有效性。在 2021-2023 两年期内,该小组完成了一项案例研究,描述了库里县弗洛拉斯河流域的长期水质监测结果;并开始在吉利姆县 Thirtymile 流域开展第一个预期流域案例研究。CEP 技术团队与吉利姆县的当地合作伙伴召开会议,讨论研究区域内计划和已完成的项目。他们还开始盘点现有数据和未来的监测工作。2023 年春季,来自 CEP 机构的几名成员与当地专家一起对研究区域进行了实地考察。