一个溶酶体疾病单位,艾登布鲁克医院,剑桥大学医院中心兼儿科大学辛辛那提大学医学院,俄亥俄州俄亥俄州俄亥俄州俄亥俄州E国家E国家血液学医学研究中心,莫斯科,俄罗斯f儿科,营养和代谢疾病系,儿童纪念健康研究所,波兰G sanoide comfornity c Comprister,Qurand comfine comcan i comfor阿姆斯特丹,荷兰J,以前是美国马萨诸塞州剑桥的萨诺夫;目前,美国马萨诸塞州沃特敦的Eloxx Pharmaceuticals,马萨诸塞州沃特敦,前美国马萨诸塞州弗雷明汉。目前,目前,美国马萨诸塞州牛顿的贝丝·瑟伯格·孤儿(Beth Thurberg Orphan Science LLC) FilièreG2M,Metabern网络,凡尔赛大学医学遗传学系目前,美国马萨诸塞州牛顿的贝丝·瑟伯格·孤儿(Beth Thurberg Orphan Science LLC) FilièreG2M,Metabern网络,凡尔赛大学医学遗传学系
2025 年 2 月 5 日 早上好,威廉姆斯主席、排名成员 Velázquez 和小企业委员会成员。 我叫 Karl Hutter,是 Click Bond 的首席执行官,Click Bond 是一家家族式制造商,总部位于内华达州卡森城,在康涅狄格州沃特敦设有另一个制造基地。 在 Click Bond,我们设计、制造和支持粘合紧固件和相关装配技术。 我们的产品遍布世界各地,甚至在太空中,用于航空、航天、汽车、船舶、工业和海上能源环境。 我们为民用和国防原始设备制造商和运营商提供服务,我们为我们在确保美国空中、陆地和海上国防方面所发挥的作用感到自豪。 Click Bond 是一家以创新为基础的家族企业。 我的父母于 1987 年创立了这家公司,将我父亲的发明天才(在创办 Click Bond 之前他拥有 80 多项专利)与我母亲的技术和商业敏锐度以及她自己在制造业的家庭背景中积累的经验相结合。他们的愿景简单而有力:胶粘紧固件和支架可以取代传统的车辆装配工艺,包括钻孔和安装螺栓和铆钉,以提高性能、设计灵活性、结构完整性以及腐蚀和疲劳性能。这种方法不仅可以提高效率,还可以消除整个制造过程中出现错误和废品的机会。38 年来,我们一直秉承这一愿景,开拓技术,延长关键系统的使用寿命,提高性能,降低成本,实现安全和可持续的全球航空运输,帮助美国作战人员成功执行任务,拓展人类在太空知识的视野。Click Bond 的故事是独一无二的,但它也与美国无数中小型制造商的故事相似:
博士,2011年至2021年; Maryfran Sowers博士,1994- 2011年(密歇根大学,安阿伯大学); Sherri-Ann Burnett- Bowie,医学博士,MPH,2020年;乔尔·芬克斯坦(Joel Finkelstein),医学博士,1999年至2020年;罗伯特·内尔(Robert Neer),医学博士,1994年至1999年(马萨诸塞州综合医院,波士顿); Imke Janssen,博士,2020年出席;霍华德·克拉维兹(Howard Kravitz),DO,MPH,2009年至2020年;琳达·鲍威尔(Lynda Powell),博士,1994年至2009年(伊利诺伊州芝加哥拉什大学医学中心);医学博士Elaine Waetjen和2020年的Monique Hedderson博士; Ellen Gold,PhD,1994年至2020年(加利福尼亚大学,戴维斯大学/凯撒分校);医学博士Arun Karlamangla,2020年;盖尔·格林代尔(Gail Greendale),医学博士,1994年至2020年(加利福尼亚大学,洛杉矶);卡罗尔·德比(Carol Derby),博士,2011年; Rachel Wildman博士,MPH,2010年至2011年; Nanette Santoro,医学博士,2004年至2010年(纽约布朗克斯的阿尔伯特·爱因斯坦医学院);医学博士Gerson Weiss,1994年至2004年(纽瓦克新泽西医学院医学与牙科大学);丽贝卡·瑟斯顿(Rebecca Thurston)博士,2020年出席;和Karen Matthews博士,1994年至2020年(宾夕法尼亚州匹兹堡大学)。 在NIH计划办公室:罗马森·科雷亚·德·阿拉乌霍,医学博士,2020年; Chhanda Dutta博士,2016年出席; Winifred Rossi,马萨诸塞州,2012年至2016年; Sherry Sherman博士,1994年至2012年; Marcia Ory,博士,1994年至2001年(NIA和NINR,马里兰州贝塞斯达:计划官员)。 在中央实验室:丹尼尔·麦康奈尔(Daniel McConnell),博士学位(密歇根大学,安阿伯,中央配体分析卫星服务)。 在协调中心:玛丽亚·莫里·布鲁克斯(Maria Mori Brooks),博士,2012年; Kim Sutton-Tyrrell博士,2001年至2012年(宾夕法尼亚州匹兹堡大学); Sonja McKinlay博士,1995年至2001年(新英格兰研究机构,沃特敦,马萨诸塞州)。博士,2011年至2021年; Maryfran Sowers博士,1994- 2011年(密歇根大学,安阿伯大学); Sherri-Ann Burnett- Bowie,医学博士,MPH,2020年;乔尔·芬克斯坦(Joel Finkelstein),医学博士,1999年至2020年;罗伯特·内尔(Robert Neer),医学博士,1994年至1999年(马萨诸塞州综合医院,波士顿); Imke Janssen,博士,2020年出席;霍华德·克拉维兹(Howard Kravitz),DO,MPH,2009年至2020年;琳达·鲍威尔(Lynda Powell),博士,1994年至2009年(伊利诺伊州芝加哥拉什大学医学中心);医学博士Elaine Waetjen和2020年的Monique Hedderson博士; Ellen Gold,PhD,1994年至2020年(加利福尼亚大学,戴维斯大学/凯撒分校);医学博士Arun Karlamangla,2020年;盖尔·格林代尔(Gail Greendale),医学博士,1994年至2020年(加利福尼亚大学,洛杉矶);卡罗尔·德比(Carol Derby),博士,2011年; Rachel Wildman博士,MPH,2010年至2011年; Nanette Santoro,医学博士,2004年至2010年(纽约布朗克斯的阿尔伯特·爱因斯坦医学院);医学博士Gerson Weiss,1994年至2004年(纽瓦克新泽西医学院医学与牙科大学);丽贝卡·瑟斯顿(Rebecca Thurston)博士,2020年出席;和Karen Matthews博士,1994年至2020年(宾夕法尼亚州匹兹堡大学)。在NIH计划办公室:罗马森·科雷亚·德·阿拉乌霍,医学博士,2020年; Chhanda Dutta博士,2016年出席; Winifred Rossi,马萨诸塞州,2012年至2016年; Sherry Sherman博士,1994年至2012年; Marcia Ory,博士,1994年至2001年(NIA和NINR,马里兰州贝塞斯达:计划官员)。在中央实验室:丹尼尔·麦康奈尔(Daniel McConnell),博士学位(密歇根大学,安阿伯,中央配体分析卫星服务)。在协调中心:玛丽亚·莫里·布鲁克斯(Maria Mori Brooks),博士,2012年; Kim Sutton-Tyrrell博士,2001年至2012年(宾夕法尼亚州匹兹堡大学); Sonja McKinlay博士,1995年至2001年(新英格兰研究机构,沃特敦,马萨诸塞州)。指导委员会:马里兰州苏珊·约翰逊(爱荷华州爱荷华大学),现任主席;马里兰州的克里斯·加拉格尔(Chris Gallagher)(内布拉斯加州奥马哈市克雷顿大学),前主席。
马萨诸塞州沃特敦,2025 年 1 月 13 日:Corner Therapeutics 是一家开创癌症和感染新方法的免疫疗法公司,该公司今天宣布,科学联合创始人兼董事会成员 Jonathan Kagan 博士将加入公司,担任杰出科学家的独特角色。在这个职位上,Kagan 将领导临床前发现和平台开发项目,并与高级团队合作进行临床开发,包括开发一种针对 HPV 诱发癌症的新型 mRNA 免疫疗法。Kagan 将继续领导并扩大与比尔和梅琳达盖茨基金会以及专注于癌症和传染病的生物制药公司的现有战略合作伙伴关系。Corner 首席执行官 Steven Altschuler 指出:“Jon 是一位有远见的科学家,他享誉全球的实验室率先对先天免疫进行了分子分析,而这一领域是免疫疗法开发的核心。他对免疫系统运作的独特见解改变了我们对宿主防御的理解,我们期待利用他的专业知识来加速我们旨在确保终身免疫的项目。” Kagan 表示:“虽然过去十年证明了以 T 细胞为中心的癌症治疗的价值,但未来十年将迎来先天免疫疗法的时代。我很高兴在这个领域如此激动人心的时刻加入 Corner,并期待与他们世界一流的科学家合作,加速产品开发。” Kagan 于 2019 年共同创立了 Corner Therapeutics,旨在通过精确控制先天免疫系统来开发免疫疗法。基于 Kagan 教授的研究,Corner 的基于 mRNA 和树突状细胞超活化平台可指导先天免疫系统设计自己的长寿抗病 T 细胞。Kagan 将继续在波士顿儿童医院和哈佛医学院担任实验室和现任职务。去年,Corner 启动了 5400 万美元的 A 轮融资。该公司目前与领先的生物制药公司和非营利组织(包括比尔和梅琳达盖茨基金会)合作,以充分实现治疗和预防疫苗的保护承诺。关于 Corner Therapeutics, Inc. Corner Therapeutics 是一家免疫疗法公司,致力于为癌症和传染病提供终身保护。Corner 利用其新型树突状细胞刺激平台,教导免疫系统设计自己的长寿抗病 T 细胞。Corner 的技术解决了“最后一英里”问题,该问题阻碍了研究人员实现医学的圣杯:提供终身免疫的治疗性癌症和传染病疫苗。凭借其抗原无关平台,Corner 正在彻底改变对各种癌症和传染病的治疗。该公司已获得领先公司的资助
海报展示(截至 2023 年 9 月 19 日)海报会议 B 星期五,10 月 13 日 | 下午 12:30-下午 4:00 第 2 层,展览厅 D B002:FHD-286 在 AML 或 MDS 患者中开展的 1 期研究中的药效学和抗肿瘤机制。Mike Collins,Foghorn Therapeutics,美国马萨诸塞州剑桥。B003:从晚期癌症患者的肿瘤组织和 Tempus 基因组数据库的液体活检中收集的 TSC1 和/或 TSC2 变异的真实世界 (RW) 表征和频率。David J. Kwiatkowski,布莱根妇女医院,美国马萨诸塞州波士顿。B004:NF-κB 和 NRF2 信号之间的分子串扰影响 HPV 相关头颈癌的预后。Aditi Kothari,北卡罗来纳大学,美国北卡罗来纳州教堂山。 B005:分子分析和 ESCAT 分类对患者结果的影响:居里研究所分子肿瘤委员会的经验。Maud Kamal,法国巴黎居里研究所。B006:通过邻近连接试验评估的高 RAS-RAF 结合与 NSCLC 对 KRAS G12C 抑制剂的敏感性有关。Ryoji Kato,美国佛罗里达州坦帕市 H. Lee Moffitt 癌症中心和研究所。B007:NCI-MATCH 试验 (EAY131) 中肿瘤组织和血浆基因分型之间的一致性。Mohamed A. Gouda,德克萨斯大学 MD 安德森癌症中心,美国德克萨斯州休斯顿。B008:机器学习支持对具有光谱重叠的共定位多重 IHC 信号进行量化。Waleed Tahir,PathAI,美国马萨诸塞州波士顿。 B009:基于面板的同源重组缺陷突变特征与转移性去势抵抗性前列腺癌对 PARP 抑制的反应有关。Daniel Boiarsky,塔夫茨医学中心,美国马萨诸塞州波士顿。B010:使用加性多实例学习模型对 H&E 全幻灯片图像中的基因表达特征进行空间分辨预测。Chintan Parmar,PathAI,美国马萨诸塞州波士顿。B011:GDF-15 是上皮样血管内皮瘤侵袭性的生物标志物,并通过 ATF4 抑制被雷帕霉素下调。Alessia Beretta,意大利米兰国家肿瘤研究所 IRCCS 基金会。 B012:验证 OncoSignature 检测,这是一种针对 ACR-368 的响应预测定量多重免疫荧光检测,用于预测癌症患者对 CHK1/2 抑制剂 ACR-368 的敏感性。Michail Shipitsin,Acrivon Therapeutics,美国马萨诸塞州沃特敦。B013:乳腺癌 Notch 转录组特征的鉴定。Felix Geist,默克集团医疗保健业务,德国达姆施塔特。B014:非小细胞肺癌患者 Nectin-4 蛋白表达的特征。Sean Santos,Bicycle Therapeutics,美国马萨诸塞州剑桥。
海报演示文稿(截至9/14/23)10月13日(星期五)海报会议B | 12:30 pm-4:00 PM 2级,展览馆D B002:在AML或MDS受试者中,在1期研究中,FHD-286的药效学和抗肿瘤机制。Mike Collins,Foghorn Therapeutics,美国剑桥,美国。b003:从肿瘤组织和液体活检中收集的TSC1和/或TSC2改变的现实世界(RW)表征和频率是晚期癌症患者的TEMPUS基因组数据库的液体活检。美国马萨诸塞州波士顿的杨百翰和妇女医院的戴维·J·Kwiatkowski。b004:NF-κB和NRF2信号之间的分子串扰会影响与HPV相关的头颈癌的预后。Aditi Kothari,UNC,美国北卡罗来纳州教堂山。b005:分子分析和ESCAT分类对患者结局的影响:库里学院分子肿瘤板的经验。莫德·卡马尔(Maud Kamal),法国巴黎库里学院。b006:通过接近连接测定评估的高RAS-RAF结合与NSCLC中对KRAS G12C抑制剂的敏感性有关。Ryoji Kato,H。LeeMoffitt癌症中心和研究所,佛罗里达州坦帕。 B007:NCI匹配试验中肿瘤组织与血浆基因分型之间的一致性(EAY131)。 Mohamed A. Gouda,德克萨斯大学医学博士Anderson癌症中心,美国德克萨斯州,美国。 b008:机器学习启用了具有光谱重叠的共定位多重IHC信号的量化。 Waleed Tahir,Pathai,波士顿,美国马萨诸塞州。 Daniel Boiarsky,塔夫茨医疗中心,美国马萨诸塞州。 Chintan Parmar,Pathai,波士顿,美国马萨诸塞州。Ryoji Kato,H。LeeMoffitt癌症中心和研究所,佛罗里达州坦帕。B007:NCI匹配试验中肿瘤组织与血浆基因分型之间的一致性(EAY131)。Mohamed A. Gouda,德克萨斯大学医学博士Anderson癌症中心,美国德克萨斯州,美国。 b008:机器学习启用了具有光谱重叠的共定位多重IHC信号的量化。 Waleed Tahir,Pathai,波士顿,美国马萨诸塞州。 Daniel Boiarsky,塔夫茨医疗中心,美国马萨诸塞州。 Chintan Parmar,Pathai,波士顿,美国马萨诸塞州。Mohamed A. Gouda,德克萨斯大学医学博士Anderson癌症中心,美国德克萨斯州,美国。b008:机器学习启用了具有光谱重叠的共定位多重IHC信号的量化。Waleed Tahir,Pathai,波士顿,美国马萨诸塞州。Daniel Boiarsky,塔夫茨医疗中心,美国马萨诸塞州。 Chintan Parmar,Pathai,波士顿,美国马萨诸塞州。Daniel Boiarsky,塔夫茨医疗中心,美国马萨诸塞州。Chintan Parmar,Pathai,波士顿,美国马萨诸塞州。b009:基于面板的同源重组缺乏症的基于面板的突变特征,并响应转移性cast割的前列腺癌对PARP抑制作用。b010:使用添加性多个实例学习模型在H&E H&E整个幻灯片图像中基因表达特征的空间分辨预测。b011:GDF-15是上皮性血管内皮瘤侵略性的生物标志物,并由Sirolimus通过ATF4抑制而受到调节。Alessia Beretta,Fondazione Irccs Istituto Nazionale dei tumori,意大利米兰。b012:验证Oncosignature Assay是一种ACR-368级的反应预测定量多重多重免疫荧光测定法,以预测对CHK1/2抑制剂ACR-368的敏感性。Michail Shipitsin,Acrivon Therapeutics,美国沃特敦。B013:鉴定乳腺癌的凹痕转录组学特征。Felix Geist,德国达姆施塔特默克KGAA的医疗保健业务。b014:非小细胞肺癌患者中蜜素-4蛋白表达的表征。Sean Santos,自行车治疗学,美国剑桥。
海报展示(截至 2023 年 9 月 14 日)海报会议 B 10 月 13 日星期五 | 下午 12:30-下午 4:00 第 2 层,展览厅 D B002:FHD-286 在 AML 或 MDS 患者中开展的 1 期研究中的药效学和抗肿瘤机制。Mike Collins,Foghorn Therapeutics,美国马萨诸塞州剑桥。B003:从晚期癌症患者的肿瘤组织和 Tempus 基因组数据库的液体活检中收集的 TSC1 和/或 TSC2 变异的真实世界 (RW) 表征和频率。David J. Kwiatkowski,布莱根妇女医院,美国马萨诸塞州波士顿。B004:NF-κB 和 NRF2 信号之间的分子串扰影响 HPV 相关头颈癌的预后。Aditi Kothari,北卡罗来纳大学,美国北卡罗来纳州教堂山。 B005:分子分析和 ESCAT 分类对患者结果的影响:居里研究所分子肿瘤委员会的经验。Maud Kamal,法国巴黎居里研究所。B006:通过邻近连接试验评估的高 RAS-RAF 结合与 NSCLC 对 KRAS G12C 抑制剂的敏感性有关。Ryoji Kato,美国佛罗里达州坦帕市 H. Lee Moffitt 癌症中心和研究所。B007:NCI-MATCH 试验 (EAY131) 中肿瘤组织和血浆基因分型之间的一致性。Mohamed A. Gouda,德克萨斯大学 MD 安德森癌症中心,美国德克萨斯州休斯顿。B008:机器学习支持对具有光谱重叠的共定位多重 IHC 信号进行量化。Waleed Tahir,PathAI,美国马萨诸塞州波士顿。 B009:基于面板的同源重组缺陷突变特征与转移性去势抵抗性前列腺癌对 PARP 抑制的反应有关。Daniel Boiarsky,塔夫茨医学中心,美国马萨诸塞州波士顿。B010:使用加性多实例学习模型对 H&E 全幻灯片图像中的基因表达特征进行空间分辨预测。Chintan Parmar,PathAI,美国马萨诸塞州波士顿。B011:GDF-15 是上皮样血管内皮瘤侵袭性的生物标志物,并通过 ATF4 抑制被雷帕霉素下调。Alessia Beretta,意大利米兰国家肿瘤研究所 IRCCS 基金会。 B012:验证 OncoSignature 检测,这是一种针对 ACR-368 的响应预测定量多重免疫荧光检测,用于预测癌症患者对 CHK1/2 抑制剂 ACR-368 的敏感性。Michail Shipitsin,Acrivon Therapeutics,美国马萨诸塞州沃特敦。B013:乳腺癌 Notch 转录组特征的鉴定。Felix Geist,默克集团医疗保健业务,德国达姆施塔特。B014:非小细胞肺癌患者 Nectin-4 蛋白表达的特征。Sean Santos,Bicycle Therapeutics,美国马萨诸塞州剑桥。
个人简介 Thomas Michel 是哈佛医学院医学和生物化学教授,也是布莱根妇女医院心血管医学的资深医师。Michel 出生于俄勒冈州波特兰,于 1977 年获得哈佛大学生物化学科学学士学位。他在 Robert Lefkowitz 实验室获得生物化学博士学位,并于 1984 年获得杜克大学医学博士学位。他在布莱根妇女医院 (BWH) 和哈佛医学院 (HMS) 接受了内科和心脏病学的临床和博士后培训。随后,他被任命为 HMS 和 BWH 的教员,在那里担任科学家、教师和临床医生多年。Michel 与妻子住在马萨诸塞州沃特敦。 Michel 是约 300 篇同行评审研究论文、评论和书籍章节的作者,是心血管信号转导领域的全球领军人物:研究心血管系统中的细胞和组织如何交流,以及这些交流途径在动脉粥样硬化、糖尿病和心力衰竭等疾病状态下如何改变。他的研究对我们理解血管生物学产生了巨大影响,创造了许多显著的“第一”。Michel 的实验室首次克隆和表征了内皮型一氧化氮合酶 (eNOS),这是心血管稳态的关键酶。他的实验室率先开发和应用生物传感器来探索涉及氧化介导途径的细胞内信号传导反应。Michel 是第一个利用新化学遗传学生成和验证氧化应激体内模型的人,从而创建了心力衰竭和神经退行性疾病的新型动物模型。目前,他正在积极开展的研究项目涵盖从最先进的细胞成像到信息丰富的化学遗传动物模型的开发,以研究糖尿病、神经退行性疾病和心力衰竭中涉及活性氧和活性氮物质的信号转导途径。米歇尔因其研究获得了许多奖项,包括美国药理学和实验治疗学会颁发的约翰·J·阿贝尔药理学奖。他被授予血管药理学保罗·范豪特杰出讲师称号,并获得自由基生物学和医学学会颁发的两年一度的发现奖。他因利用化学遗传学方法利用氧化应激创建新的心力衰竭动物模型的工作而获得了自由基研究学会颁发的 2024 年临床科学奖。他被选为美国临床研究学会、大学心脏病学协会、美国医师协会会员,并被选为美国心脏病学会院士。他曾担任美国国立卫生研究院药理学研究部门主席,并担任多个编辑委员会成员。多年来,他曾担任萨诺夫心血管研究基金会的领导者,目前担任萨诺夫心血管研究基金会董事会主席。Michel 也是一名执业心脏病专家和致力于教育的教育家。他曾担任哈佛医学院第一任教育院长,他创新的教学计划帮助改变了哈佛医学院的医学生和研究生教育。Michel 是哈佛-麻省理工学院 MD-PhD 项目的领导者。Michel 在哈佛医学院的研究生课程中引入了对生化发现的社会影响和社会背景的教学。他获得过无数教学和指导奖项,包括 Braunwald 临床心脏病学教学奖、Baughman 教师指导奖、Jackson 杰出床边教学奖、哈佛医学院研究生颁发的 Shackleford 研究生院教学奖以及 BWH 住院医师颁发的教师导师奖。米歇尔还是科学界幽默和音乐的倡导者,担任《不可思议的研究年鉴》的编辑,并担任搞笑诺贝尔奖评选委员会成员。他是每年在哈佛举行的搞笑诺贝尔奖颁奖典礼的音乐总监。米歇尔是一位狂热的业余手风琴演奏家,曾随手风琴在世界各地巡演,是波士顿 Squeezebox 乐团的创始音乐总监——搞笑诺贝尔奖颁奖典礼的官方手风琴八重奏。
增强器AAV工具箱用于访问和扰动纹状体细胞类型和循环作者Avery C. Hunker 1,#,Morgan E. Wirthlin 1,#,Gursajan Gill 2,Nelson J. Johansen 1,Marcus Hooper 1,Marcus Hooper 1,Marcus Hooper 1,Marcus hooper 1,Marcus hooper 1,Marcus wivoria Omstead 1,Naz taskin 1,Naz Taskin 1,Natalie Vargquel 2 Gore 1,Yoav Ben-Simon 1,Yeme Bishaw 1,Ximena Opitz-Araya 1,Refugio A. Martinez 1,Sharon Way 1,Bargavi Thyagarajan 1,M。NathalyLerma 1,Will Laird 1,Will Laird 1,Otto Sven 1,Otto Sven 1,Raymond E.A.,Raymond E.A.最佳的课堂载体被策划,用于访问包括中刺神经元(MSN),直接和间接途径MSN以及SST-ChoDL,PVALB-PTHLH和胆碱能中的杂种途径,包括中型棘神经元(MSN),直接和间接途径。特异性通过多种分子验证模式,三种不同的病毒输送途径以及不同的转基因货物评估。重要的是,我们提供详细信息
