图 2 显示了大脑的各个部分及其功能。正如大自然赋予我们 2 只眼睛、2 只手、2 只耳朵、2 个肺、2 个肾、2 只脚……,我们的大脑也由两个半球组成 - 左半球和右半球(见图 3)。两个半球通过胼胝体连接,胼胝体是一束超过 2 亿根神经纤维,使它们之间能够进行交流(见图 3)。有趣的是,大脑的左侧控制身体的右侧,而身体的右侧控制身体的左侧。左脑被称为优势半球,与逻辑、口头和书面语言有关 - 其表达、阅读、写作和理解(有关两个半球的更详细专业化,见图 3)。右脑是直觉的、艺术的。
构成了一代的物理机制,传播的特征和可能使用未阻尼的温度波的使用。这些波的产生过程与局部松弛热力转移过程的可逆性有关。在实验过程中,结果表明,这种波只能在某些频率下存在,而在放松时间上延长。已经研究了使用这些波在很长远处使用这些波的能量传递的可能性。可以证明,使用这些波X射线产生是可能的,并且在较厚的金属屏幕后面的TID目标中有效刺激了远离波源的核融合。也被认为是实现与这些温度波作用下相互作用颗粒相一相关状态相关的LENR反应的可能物理机制。
摘要:环境保护的需求推动了可再生能源的大规模引入。尽管风能和太阳能是目前最成熟的发电技术,但波浪能每年仍有巨大的能源潜力尚未开发。事实上,目前还没有开发出用于波浪能转换的领先设备。因此,未来波浪能的开发将与特定的配电和输电基础设施密切相关,由于波浪能的随机性,这些基础设施必须满足高要求才能保证电网的安全性和稳定性。为此,本文介绍了一种基于公共直流母线拓扑的电气架构模型,其中包括由锂离子电池和飞轮与波浪能转换器耦合组成的混合储能系统 (HESS)。具体来说,这项研究工作旨在研究在特定的压力生产条件下,HESS 在公共耦合点 (PCC) 引入的电压和电流波形频率以及瞬态行为方面的有益影响。具体而言,在定义的模拟场景中,结果表明,PCC 处的电压波频率峰值降低了 64% 至 80%,与没有存储的情况下相比,HESS 的稳定速度更快,在更短的时间内(-10% 至 -42%)达到设定值(50 Hz)。因此,在波浪能转换器中集成 HESS 可以大大减少与间歇性和波动性波浪生产有关的主电网安全性和稳定性问题,从而显著提高对可再生能源电力预期增长份额的容忍度。
我们对凝结问题的理解正在迅速发展,目前,该领域获得的许多新见解在很大程度上定义了当代科学的面貌。此外,该领域的发现正在塑造现在和未来的技术。如此,很明显,未来发展的最重要结果和指示只能由合作的国际作家群体涵盖。“凝结物质科学中的现代问题”是一系列关于凝结物质科学的贡献和专着,该杂志是由Elsevier Science Pubishers的部门North-Holland Pharpisher出版的。在杰出的咨询编辑委员会的支持下,该系列选择了当前感兴趣的领域,这些领域已予以审查。苏联和西方学者都在为该系列做出贡献,因此,每个贡献的数量都有两个编辑。单图。完整系列将提供冷凝物质科学的最全面覆盖范围。本系列基础的另一个重要结果是,来自不同国家的学者之间一种相当有趣且富有成果的合作形式。我们深信,这种在科学与艺术领域以及其他对人类活动的社会有用领域的国际合作将有助于建立信心与和平的氛围。出版社“ Nauka”出版了俄罗斯语言的卷。以这种方式确保了最广泛的读者群。
人识别技术通过利用其独特的,可测量的生理和行为特征来认可个人。然而,最先进的人识别系统已被证明是脆弱的,例如,反监视的假体口罩可以阻止脸部识别,隐形眼镜可以欺骗虹膜识别,Vocoder可以损害语音识别,而指纹膜可以欺骗指纹传感器。EEG(脑电图)基于识别,它利用用户的脑电波信号进行识别并提供了更具弹性的解决方案,最近引起了很多关注。但是,准确性仍然需要提高,很少的工作集中在识别系统的鲁棒性和适应性上。我们提出了一种基于脑电图的生物特征识别方法Mindid,可实现更高的准确性和更好的特征。首先,分析了脑电图数据模式,结果表明,增量模式包含用于用户识别的最独特信息。然后,分解的三角形模式被送入基于注意力的编码器decoder rnns(反复的神经网络)结构,该结构根据通道的重要性将注意力重量不同于不同的EEG通道。从基于注意的RNN中学到的判别表示形式用于通过增强分类器来识别用户的标识。在3个数据集(两个本地和一个公众)上评估了建议的方法。另一个本地数据集(EID-S)和公共数据集(EEG-S)分别用于演示鲁棒性和适应性。一个本地数据集(EID-M)用于性能评估,结果表明,我们的模型达到了0.982的准确性,该准确性优于基准和最先进的方法。结果表明,所提出的方法有可能在实践环境中大部分部署。
用于经典波(例如电磁波和声波)的拓扑材料引起了越来越多的关注,这主要是因为它们具有鲁棒性、低损耗以及边界赋予的新的人工自由度。表面声波 (SAW) 作为广泛使用的微型设备相关信息载体,在当今的无线通信和传感网络中无处不在。在此,我们报告了基于单片集成平台的 SAW 拓扑绝缘体的实现。通过在压电半空间上使用工作频率为数十兆赫的微型声学谐振器阵列,我们成功地赋予电泵浦瑞利型 SAW 以“自旋动量锁定”特性,使固态声波在“三维体积上二维表面的一维界面”上任意绕行并穿过缺陷和交叉点,而损耗比任何其他解决方案都要小得多。这些革命性的拓扑 SAW 可能为未来移动通信、传感和量子信息处理等领域具有超高性能和先进功能的单片电子(光子)声子电路开辟一条道路。
人脑连续处理视觉输入的流。然而,单个图像通常会触发延伸超过1s的神经反应。要了解大脑如何编码和保持连续的图像,我们用脑电图分析了人类受试者观看时的大脑活动。 5000个视觉刺激以快速序列呈现。首先,我们确认可以从大脑活动中解码每种刺激; 1s,我们证明大脑在每次瞬间同时代表多个图像。第二,我们在预期的视觉层次结构中进行了定位的脑反应,并表明在每次瞬间,不同的大脑区域代表了过去刺激的不同快照。第三,我们提出了一个简单的框架,以进一步表征这些行进波的动态系统。我们的结果表明,一系列神经回路,每个链由(1)隐藏的维护机制和(2)可观察到的更新机制组成,它解释了视觉序列引起的宏观脑表示的动力学。一起,这些结果详细介绍了一个简单的体系结构,解释了如何同时在大脑中同时代表连续的视觉事件及其各自的时间。
摘要:在这项研究中,研究了基本抗对称(A 0)和对称(S 0)羔羊波的基本抗对称液的光束,以及零阶的剪切 - 霍利底氏(SH 0)波。使用有限元方法,对跨层换能器具有弧形电极的适当配置,以解释了缓慢曲线的各向异性和模式的分散板中的各向异性。fro纤维。基于分析的结果,制造了相关的延迟线,并在YX-LITHIUM NIOBATE板中测量了线的传递函数(插入损失)。使用电子扫描显微镜,可视化相同波的电场的分布。这项研究的结果可能对结合纳米和声音原理的混合设备和传感器很有用。
摘要:本文探讨了基于光流视频的技术在存在波浪破碎诱导泡沫的近岸估计波浪滤波表面电流的潜力。该方法使用破碎波通过后留下的漂流泡沫作为准被动示踪剂并跟踪它以估计表面水流。首先从图像序列中去除与海浪相关的光学特征,以避免捕获传播波而不是所需的泡沫运动。通过对图像的每个像素应用时间傅立叶低通滤波器来去除波浪。然后将低通滤波图像输入光流算法以估计泡沫位移并产生平均速度场(即波浪滤波表面电流)。我们使用一周连续的 1 Hz 采样帧,这些帧是在白天通过位于 La Petite Chambre d'Amour 海滩(法国西南部安格雷)的单个固定摄像机收集的,当时处于高能条件,显著波高范围为 0.8 至 3.3 米。将光流计算的速度与从安装在水下礁石上的一个洋流剖面仪获取的时间平均原位测量值进行了比较。将计算出的环流模式与不同场条件下的碎浪区漂流物轨迹进行了比较。光流时间平均速度与洋流剖面仪测量值显示出良好的一致性:判定系数(r2)= 0.5–0.8;均方根误差(RMSE)= 0.12–0.24 m/s;平均误差(偏差)= − 0.09 至 − 0.17 m/s;回归斜率 = 1 ± 0.15;相干性 2 = 0.4–0.6。尽管低估了持续波浪冲击礁石时的离岸速度,但光流能够正确再现漂流轨迹所描绘的平均流模式。这些模式包括裂口环流、主要的向岸表面流和充满活力的沿岸流。我们的研究表明,开源光流算法是一种很有前途的沿海成像应用技术,特别是在高能波浪条件下,当现场仪器部署可能具有挑战性时。
摘要:使用观测值和高分辨率数值模拟研究了深渊南海(SCS)的地形波浪波(TRW)。这些能量波可以占中央SC中深层边界电流和海拔区域中动能(KE)的40%以上。这一比例甚至可以在北部和南部SC的斜坡上达到70%。TRW诱导的电流表现出柱状(即相位)结构,其中速度向下增加。波特性,例如周期(5-60天),波长(100-500 km)和垂直捕获量表(10 2 –10 3 m),根据SC的环境参数的不同。TRW能量沿陡峭的地形传播,相位传播在海上。trws具有高频的攀岩效果比低频的攀爬效果更强,因此可以进一步上坡。对于具有一定频率的TRW,波长和捕获量表以地形β为主导,而组速度对内部Rossby变形半径更敏感。带有水平剪切的背景循环可以改变TRW的波长和方向,如果流速与组速度相当,尤其是在中部,南部和东部SC中。一个案例研究提出了TRW的两个可能的能源:上层的中尺度扰动和深层的大规模背景循环。前者通过压力工作提供KE,而后者通过斜压不稳定性转移了可用的势能(APE)。
