Electrospeed GCS 被归类为可变电压逆变器 (VVI)。它使用六脉冲可控硅整流器 (SCR) 将交流电转换为可变电压直流电。在需要降低谐波的地方,可以配置具有更高脉冲数转换器的驱动器(标识为 12 或 18 脉冲驱动器)。直流总线上的串联电感器和电容器用于过滤交流纹波。逆变器使用六个功率 IGBT 晶体管,使用 Centrilift 的 SelectWave TM 逆变器算法合成三相准正弦输出电压。这款现代交流可变电压逆变器旨在满足需要变频源的安装的所有要求。它直接使用 380 至 480 VAC 三相 50/60 赫兹电源。使用最新的微处理器技术,可以轻松设置、操作和诊断。“微”控制还减少了所需的电路板数量,从而提高了驱动器的可靠性和多功能性。图形操作员界面易于使用,并可对特殊应用进行编程。GCS 可编程用于多种类型的负载,例如可变扭矩、恒定扭矩和具有扩展速度范围的恒定电压。GCS 控制系统还提供高速遥测接口 (CITIBus TM ),可简化控制系统的扩展和定制。Electrospeed 图形控制系统有两种类型的外壳:防风雨 (NEMA 3、IP54) 和通用 (NEMA
轻型背包式简易爆炸装置干扰器 EB0902 专为面临遭遇遥控简易爆炸装置(RCIED)风险的地面部队而设计。背包式干扰器完全防风雨、体积相对较小且可背包安装,具有坚固的机械设计,可同时满足不同的频率范围要求。这款背包式便携式干扰器可覆盖特定区域,以防止无线电接收器获得用于引爆遥控爆炸武器的射频信号,配备长寿命可充电电池,可在野外使用。基于反简易爆炸装置技术的先进研发,背包式干扰器可配置为阻止不同频段,包括:甚高频、超高频、手机、卫星电话等。这款简易爆炸装置干扰装置可通过连接到配备反简易爆炸装置配置软件的笔记本电脑进行编程。
完全独立,专为户外应用而设计,每台冷水机组都配备低噪音双螺杆压缩机,压缩机内配有完全独立的润滑系统。这提供了一个简单且极其可靠的压缩机系统,压缩机电机用吸入气体冷却,并配有故障安全液体喷射系统,以确保在任何条件下电机冷却。每台压缩机都有自己独立的制冷剂回路,并与蒸发器和冷凝器匹配,以实现最佳性能。冷凝器盘管的布置使整个表面的空气充分循环,并通过集成内部挡板避免旁路。冷凝器风扇是多叶片翼型部分,镰刀端部分安装在喇叭口孔中,以提供最大的气流和低噪音特性。冷凝器盘管、压缩机、高效双螺杆压缩机以及防风雨电源和控制中心安装在焊接、全镀锌、刚性底座上。所有金属板均镀锌,外部面板采用 RAL 9002 粉末喷涂并烘烤以防腐蚀。
适用于移动应用 WST 7000 C 气象站是一种坚固紧凑的自动化仪器,没有任何活动部件。气象传感器和数据采集处理器集成在一个易于使用的单元中。WST 7000 C 气象站可报告风速、相对于磁北极的风向、气温、大气压、相对湿度、露点以及气象站相对于磁北极的方向。由于该气象站不受冲击和振动的影响,因此非常适合移动应用。该气象站无需校准或定期维护,非常方便。由于其集成了指南针,因此不需要任何定位。IRDAM 使用热场变化技术测量风速和风向的方法已经过充分测试。它可以检测风吹过加热圆柱体引起的热场变化。这是湿指原理在高科技中的应用。电子罗盘确定磁北极的方向。该气象站可以朝向任何方向;它始终指示相对于磁北极的风向。 Station WST 7000 C 是一款高精度仪器,即使在非常低的速度下也能快速响应风的变化。它具有防腐蚀和免维护功能。Station WST 7000 C 是一款高品质仪器。其所有组件都集成在防风雨的圆筒中。微处理器确定气象参数,
适用于移动应用 WST 7000 C 气象站是一种坚固紧凑的自动化仪器,没有任何活动部件。气象传感器和数据采集处理器集成在一个易于使用的单元中。WST 7000 C 气象站可报告风速、相对于磁北极的风向、气温、大气压、相对湿度、露点以及气象站相对于磁北极的方向。由于该气象站不受冲击和振动的影响,因此非常适合移动应用。该气象站无需校准或定期维护,非常方便。由于其集成了指南针,因此不需要任何定位。IRDAM 使用热场变化技术测量风速和风向的方法已经过充分测试。它可以检测风吹过加热圆柱体引起的热场变化。这是湿指原理在高科技中的应用。电子罗盘确定磁北极的方向。该气象站可以朝向任何方向;它始终指示相对于磁北极的风向。 Station WST 7000 C 是一款高精度仪器,即使在非常低的速度下也能快速响应风的变化。它具有防腐蚀和免维护功能。Station WST 7000 C 是一款高品质仪器。其所有组件都集成在防风雨的圆筒中。微处理器确定气象参数,
MIL-DTL-3643B 2003 年 11 月 25 日 取代 MIL-C-3643A 1961 年 2 月 21 日 详细规范 连接器、同轴、射频、HN 系列、和相关配件、一般规范 本规范经批准可供国防部所有部门和机构使用 1. 范围 1.1 范围。本规范涵盖防风雨、HN 系列射频同轴连接器和相关配件的一般要求。这些连接器的标称阻抗为 50 欧姆,工作电压为 1,500 伏均方根,标称工作频率范围为 0 至 10,000 MHz(见 6.1 和 6.3)。 1.2 分类。 1.2.1 类型名称。连接器和相关配件的类型名称源自 MIL-STD-196 中规定的 AN 命名系统(见 3.1 和 6.2)。 1.2.2 零件或识别号 (PIN)。PIN 由适用的“UG”名称组成(见 6.3)。UG-XXXX( )/U 2. 适用文件 2.1 一般规定。本节列出的文件在本规范的第 3、4 或 5 节中指定。本节不包括本规范其他部分引用的文件或推荐用于补充信息或作为示例的文件。尽管我们已尽一切努力确保此列表的完整性,但文件用户仍需注意,他们必须满足本规范第 3、4 或 5 节中引用的所有指定要求,无论这些要求是否列出。有关 t 的评论、建议或问题
MIL-DTL-3643B 2003 年 11 月 25 日 取代 MIL-C-3643A 1961 年 2 月 21 日 详细规范 连接器、同轴、射频、HN 系列、和相关配件、一般规范 本规范经批准可供国防部所有部门和机构使用 1. 范围 1.1 范围。本规范涵盖防风雨、HN 系列射频同轴连接器和相关配件的一般要求。这些连接器的标称阻抗为 50 欧姆,工作电压为 1,500 伏均方根,标称工作频率范围为 0 至 10,000 MHz(见 6.1 和 6.3)。 1.2 分类。 1.2.1 类型名称。连接器和相关配件的类型名称源自 MIL-STD-196 中规定的 AN 命名系统(见 3.1 和 6.2)。1.2.2 零件或识别号 (PIN)。PIN 由适用的“UG”名称组成(见 6.3)。UG-XXXX( )/U 2. 适用文件 2.1 总则。本节列出的文件在本规范的第 3、4 或 5 节中指定。本节不包括本规范其他部分引用的文件或推荐用于附加信息或作为示例的文件。尽管已尽一切努力确保此列表的完整性,但文档用户仍需注意,他们必须满足本规范第 3、4 或 5 节中引用的所有指定要求,无论这些要求是否列出。有关本文件的评论、建议或问题应发送至:哥伦布国防供应中心指挥官,收件人:VAI,邮政信箱 3990 East Broad Street,哥伦布,俄亥俄州 43216-5000,或发送电子邮件至 RFConnectors@dscc.dla.mil 。由于联系信息可能会发生变化,您可能需要使用 ASSIST 在线数据库(网址为 www.dodssp.daps.mil)验证此地址信息的最新情况。
1 炮盾 • 铝制外壳,用于对火炮部件进行防风雨、防弹和防生化防护。上部结构 [炮室] 在系统运行期间无人值守。 • 支撑检修门、系统通风、液压集管箱和与防护罩一体的减压缓冲器。 2 枪尾 • 固定炮管内的子弹以便射击,连接电动击针,并在射击时容纳爆炸压力。 3 炮口防护罩 • 提供动态外壳,覆盖和密封火炮的仰角弧,并为炮管和弹壳弹出门安装防风雨端口。 4 炮尾机构 • 液压活塞驱动的连杆,用于在射击或哑火事件后升高和降低枪尾和提取推进剂所需的部件。 5 炮管外壳 • 支撑炮管的后膛端。 • 安装后坐和反后坐缸,以及阀控气体喷射系统,以清除炮管中的残留气体。 6 炮架 • 为上部火炮提供底环和耳轴支撑。 • 安装传动机构和仰角动力驱动器、上部蓄能器系统、滑动组件和防护罩。• 为火炮的传动机构和仰角功能提供轴线。7 支架 • 为传动机构轴承和齿轮环的固定部件提供安装在甲板上的平台。8 托架 • 升至火炮仰角轴线,将垂直方向的弹药从上部提升机转移到火炮滑动装置的指向角,以便于后膛装填。9 滑动装置 • 火炮发射部件的主要组件,包括托架、枪尾盖和枪尾机构;火炮身管外壳;空壳提取器和托盘。• 安装火炮仰角轴线的耳轴;安装仰角齿轮扇形装置。
1 炮盾 • 铝制外壳,用于对炮部件进行防风雨、防弹和防生化防护。上部结构 [炮室] 在系统运行期间无人值守。• 支撑检修门、系统通风、液压集水箱和与防护罩一体的减压缓冲器。 2 枪尾 • 固定炮管内的子弹以便射击,连接电动撞针,并在射击时容纳爆炸压力。 3 炮口防护罩 • 提供动态外壳,覆盖和密封炮的仰角弧,并为炮管和弹壳弹出门安装防风雨端口。 4 炮尾机构 • 液压活塞驱动的连杆,用于在射击或哑火事件后升高和降低枪尾以及提取推进剂所需的部件。 5 炮管外壳 • 支撑炮管的炮尾端。• 安装后坐和反后坐缸以及阀控气体喷射系统以清除炮管中的残留气体。 6 支架 • 为上部火炮提供基座环和耳轴支撑。 • 安装传动系统和升降动力驱动器、上部蓄能器系统、滑动组件和防护罩。 • 为火炮的传动系统和升降功能提供轴。 7 支架 • 为传动系统轴承和齿轮环的固定组件提供安装在甲板上的平台。 8 支架 • 升至火炮升降轴,将垂直方向的弹药从上部提升机转移到火炮滑动装置的指向角,以方便后膛装填。 9 滑动装置 • 主要组件
Dante 是一个能够爬上陡坡的系绳步行机器人。1992 年,它由卡内基梅隆大学发明,并被部署到南极洲,用于探索活火山埃里伯斯山。Dante 项目的机器人科学目标是展示真实的探索任务、崎岖地形上的移动、环境生存以及在严酷的南极气候下的自我维持运行。火山科学的目标是研究埃里伯斯山内火山口内独特的对流岩浆湖。这次探险展示了移动机器人技术的先进水平和机器人探险者的未来潜力。本文详细介绍了我们的目标,描述了 Dante 机器人,概述了探险过程中发生的事情,并讨论了哪些成功了,哪些失败了。我们要感谢那些为 Dante 和埃里伯斯山探险做出贡献的人。该装置由 K 2 T Inc. 的 Eric Hoffman、Matt Arnold、Tad Dockstader 和 Dimitrios Apostolopoulous 设计和组装。电子设备由 Bryon Smith、Dan Christian 和 Scott Boehmke 制造。Paul Keller、Jay West、Chris Fedor、Bill Ross、Dan Christian 和 Henning Pangels 实施软件,以便 Dante 能够感知、计划、交流和行走。Leslie Thorpe 缝制了防风雨罩。RedZone Robotics Inc. 的 Chuck Whittaker、Rob McWilliams 和 Jim Osborn 管理该项目。Jim Martin、Gary Baun、Brian Albrecht、Jim Frazier、Bob Smith 和卡内基梅隆大学的其他人
