2013 年 5 月,在德国考古研究所 (DAI) 的指导下,MayaArch3D 项目 (http://www.mayaarch3d.org) 委托开展一项机载 LiDAR(光探测和测距)任务,以收集联合国教科文组织世界遗产地和洪都拉斯科潘古玛雅城市周围景观的遥感数据。这项任务有四个目标:首先,为科潘的研究和文化资源管理生成新的、更准确的考古地图。第二,定位以前未记录的考古结构或特征。第三,结合 LiDAR 和地面检查数据,以提高生态和地形多样化景观的数据准确性。第四,开发新的 LiDAR 数据集,这些数据集可以与其他考古数据集成并托管在 3D WebGIS 中,以增强研究人员、文化遗产管理者和公众的数据可访问性和研究可能性,同时通过向不同用户组提供适当的访问级别来保护专有数据。
2013 年 5 月,在德国考古研究所 (DAI) 的指导下,MayaArch3D 项目 (http://www.mayaarch3d.org) 委托进行机载 LiDAR (光检测和测距) 任务,收集位于洪都拉斯科潘的联合国教科文组织世界遗产和古玛雅城市周围景观的遥感数据。 这次任务有四个目标:首先,为科潘的研究和文化资源管理生成新的、更精确的考古地图。其次,定位以前未记录的考古结构或特征。第三,结合 LiDAR 和地面检查数据,提高生态和地形多样化景观中的数据准确性。第四,开发新的 LiDAR 数据集,这些数据集可以与其他考古数据集成并托管在 3D WebGIS 中,以增强研究人员、文化遗产管理者和公众的数据可访问性和研究可能性,同时通过向不同用户组提供适当级别的访问权限保护专有数据。
GEO3014 Applied Geomorphology GEO3015 Applied Climatology GEO3016 Integrated Watershed Management GEO3017 Biodiversity and Conservation GEO3018 Environmental Impact Assessment GEO3019 Coastal Zone Management GEO3020 Disaster Risk and Vulnerability GEO3021 Land Evaluation and Land Use Planning GEO3022 Precision Agriculture GEO3023 Environmental Changes, Health and Wellbeing GEO3024人口统计学和社会健康GEO3025大型城市的城市可持续性地理3026城市规划和智能城市GEO3027农村和区域发展GEO3028能源资源GEO3029地理位置分析分析Geo3030高光谱遥控遥控环境遥感3031 MicroWave遥感Geo3031 Spatial Geo304 Spatial Geo304 Spatial Geo304 Spatial Geo303 3 GEO3035气候变化和人类健康GEO3036湿地管理Geo3037微塑料污染GEO3038遥感时间序列分析
1. 遥感物理学[包括轨道、平台、传感器等]2. 摄影测量原理3. 制图、大地测量和全球定位系统基础4. 多光谱、热、高光谱成像5. 微波和激光雷达传感6. 立体成像[DSM/DEM、正射影像]7. 气象成像8. 数字图像处理和分析(包括精度相关方面)9. 遥感在农业、林业、城市、水利、制图、海洋、气象到灾害管理支持等不同领域的应用。地理信息系统 1. GIS 基础知识 [数据类型、空间和非空间数据、空间查询、地理数据库组织、GIS 数据质量] 2. WebGIS 3. 开放 GIS 规范 [WMS、WFS、WCS 等] 4. 数据可视化和地图生成 [包括基准、投影、符号系统等]
测绘学是一个新词,即使尚未被普遍接受,其使用也正变得越来越广泛。它包括研究地球表面及其环境的多种学科和技术,计算机科学起着决定性的作用。更有意义和更合适的表达是地理空间信息或地理信息。地理空间信息将地形嵌入其更现代的形式(使用电子仪器测量、复杂的数据分析和网络补偿技术、全球卫星定位技术、激光扫描等)、分析和数字摄影测量、卫星和机载遥感、数值制图、地理信息系统、决策支持系统、WebGIS 等。这些专业领域在基础科学和追求的结果方面都紧密相关:严格的分离不允许我们发现几个共同的方面和在复杂的调查环境中寻找解决方案时所假设的根本重要性。 Mario A. Gomarasca 的目标看似不大,他的目标是出版一本关于测量主题的综合性教材,其中包含与地理空间信息专家和/或特别是构成该主题的学科之一相关的简单易懂的概念。同时,这本书严谨而综合,精确描述了与多种测量相关的主要仪器和方法
人类面临着巨大的挑战:如何提高农业产量,实现 21 世纪的粮食安全,养活预计将增长到 100 亿的人口。这需要在保持可持续农业系统的同时,应对气候变化、水资源枯竭以及极端天气事件导致的土壤侵蚀和生产力下降等挑战。精准农业诞生于 20 世纪 80 年代,得益于 GPS 和卫星图像等几项关键技术的发展。本文认为,随着气候变化的影响日益加剧,精准农业和农业的下一次革命将由可持续精准农业和环境 (SPAE,类似于 7R) 驱动,它可以利用过去的技术与大数据分析相结合。这种新的以技术为中心的 SPAE 从特定地点的管理重点转变为全球可持续性的概念。为了实现这一转变,我们引入了 WebGIS 框架作为组织原则,将本地、特定地点的数据生成器(称为智能农场)与区域和全球农业视图联系起来,从而为农业行业和政府决策者提供支持。这将有助于将位于网络中的数据库集成到一个系统中,以实现所需的 SPAE 管理和连接
I报告于2021年8月发布,在1901年至2018年之间,全球平均海平面增加了0.20(0.15-0.25)。在1901-1971之间的海平面平均上升速度为1.3(0.6-2.1)毫米/年,在1971年至2006年之间增加到1.9(0.8-2.9)毫米/年,并进一步增加到2006年至2018年之间的3.7(3.2至4.2)毫米/年。基于科学研究和地球科学部(MOES)的最新气候评估报告,印度洋的海平面的平均速度约为1.7毫米/年,最近几十年(1993-2015)在3.3毫米/年,每年3.3毫米/年。据观察,海平面正在以不同的速度变化。海平面上升的速度还可能包括由于这些地点的沉降或升高而导致海平面变化的表现。由于这些位置没有关于土地沉降或提升的长期数据,因此由于气候变化而导致的海平面增加率无法分离。国家沿海研究中心(NCCR),一个附属的MOES办公室开发了基于Web的数字地图集,即国家海岸线Atlas System(NSAS),在其中定期确定海岸线的变化,侵蚀,积聚热点,并向沿海地区提供沿海缓解活动的信息。NCCR还与沿海州合作,并有助于设计合适的沿海保护结构,以减轻气候变化的影响。国家沿海研究中心(NCCR)使用卫星和现场数据研究了印度海岸的海岸线变化,并在1990年至2018年间绘制了整个印度大陆海岸。km。(c)印度国家海洋信息系统中心(INCOIS)进行了沿海脆弱性指数(CVI)映射,以评估印度沿海海平面上升的可能影响,包括安得拉邦的沿海地区。据观察,海岸线的28.7%以不同程度的侵蚀程度为21.7%,低于稳定,而49.6%的侵蚀程度为49.6%。环境,森林和气候变化部(MOEF&CC)委托一项研究,以评估气候变化和海平面上升对安得拉邦海岸线的影响程度。在绿色气候基金支持的标题为“增强印度沿海社区的气候弹性”的项目下,已经开发了综合的沿海气候脆弱性评估框架。启动了海岸线栖息地和有形收入(Mishti)的红树林倡议,以全面探索覆盖约540平方英尺的红树林的开发区域。在2023 - 24财年开始的五年中,分布在11个州和2个联盟领土上。这将增强针对气候变化的弹性,以实现安得拉邦的额外脆弱沿海地区。