摘要 动力输出装置 (PTO) 是波浪能转换不可或缺的一部分,其设计过程并非易事。更好的 PTO 以及为各种应用选择和设计 PTO 架构的更好流程将有利于帮助为蓝色经济提供动力的设备,因为它们可以减少在 PTO 设计上花费的时间和金钱,并提高这些设备的整体能量捕获性能。本文记录了小型浪涌型波浪能转换器 (WEC) 的 PTO 选择过程,旨在为未来的 PTO 选择过程提供参考。在 WEC-Sim 中评估了三种 PTO 架构:液压止回阀 PTO、液压主动阀 PTO 和直接电动 PTO。构建了每个 PTO 的简单模型。由于最初没有小型设备的模型,因此在大型设备上模拟 PTO。使用弗劳德缩放法缩小结果,并与直接模拟小规模模型的结果进行比较。由于这项工作尚处于设计阶段的早期,需要对 PTO 选项进行粗略研究,因此我们做出了严格的假设。具体而言,我们将研究控制的有效性以及能量转换的效率。但是,能量捕获只是考虑的一部分;在选择 PTO 时还需要考虑物流问题。例如,大型 WEC 的组件非常大且昂贵,因此定制 PTO 组件可能有意义,但小型 WEC 将从现成的可用性中受益,因为定制成本将是小规模部署总资本成本的很大一部分。潜水式现成组件对于液压 PTO 来说更容易采购。由于高效的控制、高效的能量转换以及海洋级组件的可用性,为这种小型浪涌型 WEC 选择了主动阀液压 PTO。
摘要 几十年来,波浪能领域一直是数值模拟、比例模型测试和商业化前期项目测试的主题,但波浪能技术仍处于发展的早期阶段,必须继续证明自己是一个有前途的现代可再生能源领域。波浪能系统一直在努力克服的困难之一是设计高效的能源转换系统,该系统可以将波浪激活体振荡产生的机械能转换成另一种有用的产品。动力输出装置 (PTO) 通常被定义为负责将机械能转换成另一种可用形式(例如电能、加压流体、压缩空气等)的单个单元。PTO 以及整个动力转换链非常重要,因为它不仅影响波浪能转换成电能的效率,而且还影响波浪能转换器 (WEC) 的质量、尺寸、结构动力学和能源平准化成本。由于海洋能源行业没有用于波浪能转换的工业标准设备,因此 PTO 系统设计变化很大。目前大多数 WEC PTO 系统都包含机械或液压传动系统、发电机和电气控制系统。WEC PTO 设计的挑战在于设计一个可以有效转换不规则、双向、低频和低交变速度波浪运动的机电组件。虽然可以提前预测总平均功率水平,但必须将可变的波浪高度输入转换为平滑的电输出,因此通常
摘要WEC-SIM是一种用于模拟波能转换器的开源软件,自2014年首次发行以来,它已积极开发和应用,以模拟各种各样的副原型。WEC-SIM是由MATLAB/SIMULINK环境中的国家可再生能源实验室和桑迪亚国家劳动共同开发的。一般的波对线模型始于部署站点资源征召性能,该模型用于完成波能转换器(WEC)的流体动力模拟,并将功率一般曲线进口到网格模拟器中,以了解对本地电气网络的影响。在对整个波浪进行建模时很难进行建模,并且包含多个时间尺度和物理,但WEC-SIM专注于流体动物模拟,以预测,分析和优化WEC动态和功率性能。WEC-SIM模拟是根据辐射和衍射>在时间域中进行的
本报告受益于 Anna Milanez(私营就业服务)和 Anne Saint-Martin(公共就业服务)的贡献。Angelica Salvi Del Pero、Glenda Quintini、Andrew Green、Marguerita Lane、Chloé Touzet、Anna Milanez、Stewart Butler 和 Judd Ormsby 也提出了有益的意见和建议。如果没有附件 A 中列出的许多人的贡献,本报告就不可能完成,他们非常感激地抽出时间和专业知识与 OECD 进行交流,以完成这个项目。特别感谢世界就业联合会 (WEC) 安排在私营就业服务公司进行采访。WEC 成员还通过 2021 年 10 月 14 日举行的关于人工智能如何在私营就业服务中使用的圆桌讨论为研究提供了信息。还要感谢 2022 年 2 月 21 日至 25 日举行的国际工作、创新、生产力和技能人工智能会议上“人工智能用于劳动力市场匹配”会议的参与者。
Janie Garcia, TNSK Jason Fogarty, Potomac Economics Jeremi Wofford, Ameren Jeremy Pober, PCI Jim Baker, CMS Jodie Kovar, MPUA Joe Daggett, WPPI Joe Kinning, MEC John Crow, Alliant Jonas Cruz, MISO Jonathan Roller, ACES Josh Hubbard, Ameren Julie Burkholder, MISO Kari Hassler, Xcel Kay Henry, TEA Keith Howe, MCG Energy Khamsune Vongkhamchanh, Entergy Kim Keller, WEC Konstantin Korolyov, DTE Kristine Eslinger, BEPC Kristy Quigley, GRE Kurt Berndt, MN Power Kurt Vanderlick, Cleco Kyle Abell, MISO Lynn Hecker, MISO Maida Session, Duke Mark Hull, ACES Maura Royston, WEC May Yang, Hitachi Energy Megan Roers, MN Power Melissa Barry, OTP Melissa Swafford, Hitachi Energy Micah Cook, MISO Michaela Flagg, CES Michelle Lynch, HEPN Mindy Doerrfeld, TNSK Mitchell Bell, MB Hydro Mollie Dawson, MISO Nicole Ramirez,Nipsco
初创能源转型 (SET) 是一个支持能源转型创新的全球创新平台。该平台致力于在知名企业参与者、公共部门和能源创新领域之间建立深厚而富有成效的联系。其目标是什么?迅速扩大清洁能源技术的采用,同时在全球范围内提高政治意愿和公众接受度。SET 平台由德国能源署 (dena) 与世界能源理事会 (WEC) 合作提供支持。
Start Up Energy Transition (SET) 是一个支持能源转型创新的全球创新平台。该平台致力于在知名企业、公共部门和能源创新领域之间建立深厚而富有成效的联系。其目标是什么?迅速扩大清洁能源技术的采用,同时提高全球政治意愿和公众接受度。SET 平台由德国能源署 (dena) 与世界能源理事会 (WEC) 合作提供支持。
摘要:动力输出装置 (PTO) 的稳定性是波浪能转换器 (WEC) 最重要的考虑因素之一。PTO 装置将波浪吸收器 (WA) 装置产生的机械能转换为有用的电能。由于实际波浪运动的输入能量变化剧烈,PTO 装置产生的电能波动很大,对电气和电子设备有潜在危害。本文提出了一种用于波浪能转换器的改进型液压 PTO (HPTO)。改进型 HPTO 装置包括双高压蓄能器 (HPA) 模块和流体能量控制 (FEC) 模块,可显著提高发电机在不规则波浪情况下产生的电能。使用 Simscape Fluids 工具箱在 MATLAB/Simulink 中构建了带有传统和改进型 HPTO 装置的波浪吸收器装置的完整模型。使用遗传算法优化了 FEC 控制策略的参数。使用五个不规则波输入对改进型 HPTO 装置模型进行了仿真,以评估其在不规则条件下的性能。还研究了 HPA 压力约束对改进的 HPTO 装置性能的影响。总体而言,模拟结果表明,改进的 HPTO 装置能够在不规则海况下产生高达 87.3% WEC 的稳定功率。
执行摘要 波浪能有可能为英国提供重要的可再生能源和经济增长来源,并为英国政府的气候变化目标做出贡献 [1]。英国拥有必要的基础设施、市场、技术、法律和法规,通过关键的战略干预,波浪能行业可以取得成功,为英国带来显著利益。为了实现英国 2050 年的净零排放目标,我们需要多样化的可再生能源;波浪能将成为这一结构的重要组成部分,并为平衡电网的能源系统带来宝贵益处。英国可利用的波浪资源每年可提供 40-50 TWh 的电网电力,满足英国目前电力需求的约 15%,到 2050 年装机容量将达到 22GW [2]。波浪能是少数几个由英国主导的技术行业之一,它推动了我们的低碳经济发展,并且具有显著的英国成分(据估计,波浪能产业可以在国内市场确保约 80% 的英国成分 [2])。该资源直接映射到脆弱的沿海社区,对社区认同产生重大影响,带来经济效益,创造高价值就业和经济增长。到 2040 年,波浪能预计将新增 8,100 个就业岗位 [3],行业支持将实现 6:1 的 GVA 效益比 [2]。此外,波浪能是英国丰富的本地能源资源,它与需求完美匹配,并提供供应链基础设施的安全保障。作为早期的领导者,英国波浪能行业从各种原型的开发和部署中积累了丰富的经验、专业知识和知识,并拥有强大的学术和工业界社区。然而,波浪能的发展必须迅速加速,才能在 2050 年前实现其对英国净零排放目标的潜在贡献。波浪能路线图列出了通过有针对性的技术开发和支持机制采取的合理步骤,这些机制旨在鼓励包容性、协作和共享,从而实现 2035 年 90 英镑/兆瓦时的平准化能源成本 (LCoE) 和 2050 年 22 吉瓦的装机容量的里程碑。这种技术推动应辅以市场拉动机制,随着技术的验证和市场开始发展,市场拉动机制会增加,然后随着市场的成熟和自我维持而缩小。实现波浪能技术单位成本的逐步降低是解锁进一步投资和发展的基础。路线图的早期阶段解决了这个问题,重点是波浪能转换器 (WEC) 技术的设计和验证,以证明在降低单位成本的情况下可用性和生存性。这可以通过设计创新和在现有 WEC 或新型 WEC 概念中使用替代组件技术来实现。第一步是进行有针对性的研究,以证明其生存能力和显著的成本降低,然后是展示试点 WEC 农场的可行性。尽管波浪能对净零排放目标的贡献主要集中在公用事业规模,但波浪能的利基市场发展迅速,被视为重要的垫脚石和有效途径,可以展示将波浪能与其他可再生能源一起整合到能源系统中的好处。在这里,利基应用与公用事业规模的 WEC 设计同时进行。随着海上波浪能示范和部署的数量增加,跨学科研究的目标是提高对与海洋生态和环境相互作用的理解,实现影响评估的成本降低,并简化政策、规划和同意。随着部署的增加,利用其他部门技术转让的机会也将增加,从而降低 LCoE 并降低运营管理、维护和安全方面的风险。从 2040 年起,大规模部署波浪能将带来最显著的 LCoE 降低,研究和创新将继续并行,以进一步提高性能并降低成本。波浪能在全球具有巨大的潜力,通过战略投资,波浪能不仅可以成为我们未来可再生能源结构的重要贡献者,还可以成为英国一个利润丰厚的出口市场。
本社区福利承诺情况说明书描述了长期储能 (LDES) 示范计划的阿拉斯加铁路带 (POLAR) 泵送热能存储项目获奖者西屋电气公司 (WEC) 将如何在第一阶段与社区和劳工利益相关者合作,并共同制定劳动力发展计划、优质就业、最大化项目效益以及最小化或减轻任何潜在负面影响。这些承诺将在每个阶段结束时更新,以反映项目进展过程中的关键学习和发展。