轧制钢材等。如果制造商将每种可接受钢材等级的轧制板材提供给验船师签字,则可以省略签发材料检验证书。在这种情况下,制造商应在证书上输入以下声明,以表明钢材已通过批准流程制造,并且已通过所需的测试。如果在每份测试证书上用英文或韩文盖章或打印钢铁厂名称,并由负责产品质量保证或检验员的制造车间人员签字,则将接受以下声明形式。
本报告是作为由美国政府机构赞助的工作的帐户准备的。美国政府或其任何机构,也不是巴特尔纪念研究所,或其任何雇员,对任何信息,设备,产物或程序披露或代表其使用的任何法律责任或责任都没有任何法律责任或责任,或者对其使用的准确性,完整性或有用性都不会侵犯私人权利。以此处参考任何特定的商业产品,流程或服务,商标,制造商或以其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或Battelle Memorial Institute的认可,建议或赞成。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
摘要:在电线和弧添加剂制造(WAAM)和融合焊接中,在制造过程中可能会发生各种缺陷,例如孔隙度,裂纹,变形和融合。这些对机械性能有很大的影响,也可能导致服务过程中的制造零件失败。可以使用非破坏性测试(NDT)方法识别这些缺陷,以免受到检查的工件受到损害。本文提供了有关WAAM和融合焊接各种NDT技术的全面概述,包括带有空气式光学麦克风,光学发射光谱,激光诱导的分解光谱的激光 - 声学发射,激光摄影的监测和示例均可探测,还可以触发何处。示波器。此外,还提供了新的研究,其操作原理和执行这些技术所需的设备。可以通过NDT方法识别的最小缺陷大小是从先前的学术研究或公司进行的测试中获得的。在WAAM和融合焊接应用中使用这些技术使检测缺陷并迈出一步迈向高质量最终组件的生产。
由于焊接电流会影响电极烧尽速度、熔合深度和焊件几何形状,因此它是电弧焊工艺中最重要的变量。焊道形状、焊接速度和焊接效率都受电流影响。由于直流电极负极 (DCEN)(正极性)产生更好的效果,因此电极正极 (DCEP) 上的焊接穿透深度和行进速度更大,并且它用于大多数 GTAW 焊接(反极性)。反极性允许电极尖端快速升温并在气体钨中降解。因为阳极比阴极升温更快。气体钨电弧焊中的较高电流会导致飞溅和工件损坏。同样,在气体钨电弧焊中,较低的电流设置会导致填充焊丝粘住。为了沉积等量的填充物,必须长时间施加高温。因此,对于较低的焊接电流,通常会看到更大的热影响区域。在固定电流模式下调整电压以保持电弧电流稳定 [3,4]。与其他焊接工艺相比,我们通常通过钨极惰性气体焊接实现无缺陷接头。让您更好地控制焊接,从而实现更快、更高质量的焊接。另一方面,GTAW 比大多数其他焊接方法复杂得多,难以跟踪,而且速度要慢得多。填充金属通常被使用,但是一些焊接(称为自熔焊或组合焊)不需要它。这种方法提供了竞争方法,例如焊接技术包括屏蔽金属电弧焊和气体金属电弧焊。
应用程序、质量和 NDE、传感、控制和数据库。再次,AWI 人员组织并讲授了会前教程,内容涵盖 PC 网络、专家系统、神经网络、Windows 和 Excel 电子表格以及数据库。会议还包括主题演讲
- 免责声明:尽管已尽一切努力确保本指南所含内容的正确性和完整性,但韩国船级社对本指南中的任何错误或遗漏概不负责,也不对任何一方根据本指南中的信息采取的任何行动承担责任。本指南并非强制性的,旨在为船东、船舶运营商、造船厂、设计师和制造商提供实用的技术材料。随着未来技术的发展和成熟,本指南可能会定期修订或升级为规则和指南。
本文介绍了传感器表征,以在电池选项卡连接器的远程激光焊接(RLW)期间使用基于光电二极管的信号来检测部分部分间隙和焊接渗透深度的变化。基于光电二极管的监测已大部分用于结构焊缝,因为其成本相对较低和易于自动化。但是,在电池选项卡连接器连接过程中,对传感器表征,监测和诊断焊缝缺陷的研究尚不确定,结果尚无定论。通过不同金属薄箔焊接过程中的高变异性进行了。 基于光电二极管的信号是在铜到钢薄层束接头的RLW期间(Ni-Plated Copper 300 µm到Ni-Plated Steel 300 µm)的收集信号。 提出的方法基于对信号的能量强度和散射水平的评估。 能量强度给出了有关焊接过程中发出的辐射量的信息,并且散射水平与累积和未控制的变化有关。 的发现表明,可以通过观察等离子体信号中的级别变化来诊断部分零件间隙的变化,而反射反射没有显着贡献。 结果进一步表明,过度渗透对应于传感器信号中散射水平的显着增量。 讨论了基于监督机器学习的自动隔离和诊断有缺陷焊缝的机会。。基于光电二极管的信号是在铜到钢薄层束接头的RLW期间(Ni-Plated Copper 300 µm到Ni-Plated Steel 300 µm)的收集信号。提出的方法基于对信号的能量强度和散射水平的评估。能量强度给出了有关焊接过程中发出的辐射量的信息,并且散射水平与累积和未控制的变化有关。的发现表明,可以通过观察等离子体信号中的级别变化来诊断部分零件间隙的变化,而反射反射没有显着贡献。结果进一步表明,过度渗透对应于传感器信号中散射水平的显着增量。讨论了基于监督机器学习的自动隔离和诊断有缺陷焊缝的机会。[doi:10.1115/1.4052725]
本文介绍了传感器表征,以在电池选项卡连接器的远程激光焊接(RLW)期间使用基于光电二极管的信号来检测部分部分间隙和焊接渗透深度的变化。基于光电二极管的监测已大部分用于结构焊缝,因为其成本相对较低和易于自动化。但是,在电池选项卡连接器连接过程中,对传感器表征,监测和诊断焊缝缺陷的研究尚不确定,结果尚无定论。通过不同金属薄箔焊接过程中的高变异性进行了。 基于光电二极管的信号是在铜到钢薄层束接头的RLW期间(Ni-Plated Copper 300 µm到Ni-Plated Steel 300 µm)的收集信号。 提出的方法基于对信号的能量强度和散射水平的评估。 能量强度给出了有关焊接过程中发出的辐射量的信息,并且散射水平与累积和未控制的变化有关。 的发现表明,可以通过观察等离子体信号中的级别变化来诊断部分零件间隙的变化,而反射反射没有显着贡献。 结果进一步表明,过度渗透对应于传感器信号中散射水平的显着增量。 讨论了基于监督机器学习的自动隔离和诊断有缺陷焊缝的机会。。基于光电二极管的信号是在铜到钢薄层束接头的RLW期间(Ni-Plated Copper 300 µm到Ni-Plated Steel 300 µm)的收集信号。提出的方法基于对信号的能量强度和散射水平的评估。能量强度给出了有关焊接过程中发出的辐射量的信息,并且散射水平与累积和未控制的变化有关。的发现表明,可以通过观察等离子体信号中的级别变化来诊断部分零件间隙的变化,而反射反射没有显着贡献。结果进一步表明,过度渗透对应于传感器信号中散射水平的显着增量。讨论了基于监督机器学习的自动隔离和诊断有缺陷焊缝的机会。[doi:10.1115/1.4052725]
