朱莉娅·拉米雷斯(Julia Ramirez)的眼睛里泪流满面,她的6岁儿子Teo看着她的电脑屏幕,想知道为什么。,她试图与她的纪念Sloan Kettering同事一起在Zoom观看派对上观看今年的非裔美国人节游行时,试图解释深深的情感。“过去两年来,我是游行的一部分,我记得在MSK浮标上的感觉和人群中的人们很高兴见到我们,并说:'非常感谢,您挽救了我的生命,” MSK的患者关系总监Ramirez说。MSK通常在哈林举行的前两个非洲裔美国日游行中有漂浮物。今年的游行于9月20日由于19日的关注而被转换为在线活动,其中包括一系列表演和纪念黑人文化的证明。MSK参加年度游行,以提高人们对癌症筛查和治疗服务的认识,包括在哈林的MSK Ralph Lauren中心。妇科外科医生卡罗尔·布朗(Carol Brown)强调了MSK在游行中积极存在的重要性,并与
在本文中,我们从密度估计的角度以及对自然图像统计的特定角度进行了对高斯二元限制的玻尔兹曼机器(GB-RBM)的分析。我们发现,GB-RBMS中可见单元的边际概率分布可以写为高斯人的线性叠加,该叠加位于投影平行的thelelotope的顶点,即在高尺寸中平行的。此外,我们的分析表明,GB-RBMS中可见单元的方差在建模输入分布中起着重要作用。GB-RBM。[1]。在实践中,Lee等人。提议对GB-RBMS施加稀疏的惩罚项[2]。但是,Krizhevsky成功地使用GB-RBMS仅从微小的信息中提取特征[3]。Le Roux等。 定量评估该模型为生成模型[4],并从IMEGE重建的视图中证明了模型的缺陷。 Cho等。 通过一些补救措施解决了培训程序的缺陷[5]。 Theis等。 进一步说明了基于Loglikelihoody的估计[6]。 我们的分析和结果表明,具有简单对比性差异算法的GB-RBM也能够学习独立的组件,即使学习分布不是数据的良好表示。Le Roux等。定量评估该模型为生成模型[4],并从IMEGE重建的视图中证明了模型的缺陷。Cho等。 通过一些补救措施解决了培训程序的缺陷[5]。 Theis等。 进一步说明了基于Loglikelihoody的估计[6]。 我们的分析和结果表明,具有简单对比性差异算法的GB-RBM也能够学习独立的组件,即使学习分布不是数据的良好表示。Cho等。通过一些补救措施解决了培训程序的缺陷[5]。Theis等。 进一步说明了基于Loglikelihoody的估计[6]。 我们的分析和结果表明,具有简单对比性差异算法的GB-RBM也能够学习独立的组件,即使学习分布不是数据的良好表示。Theis等。进一步说明了基于Loglikelihoody的估计[6]。我们的分析和结果表明,具有简单对比性差异算法的GB-RBM也能够学习独立的组件,即使学习分布不是数据的良好表示。
简介在娱乐领域,创建独特、引人注目且高质量的资产既昂贵又耗时,并且需要来自不同专业领域的越来越多的知识和技能。尽管如此,观众对资产质量的期望却不断增长。为了满足这些需求,大公司通常会聘请大型专家团队;相比之下,小型开发商往往会牺牲上述一些理想的资产属性:在竞争激烈的市场中,这是一个冒险的举动。内容生成方法和技术的最新进展使得其他替代方案能够满足这些需求(程序内容生成、机器学习、深度学习、强化学习等)(Shaker、Togelius 和 Nelson 2016;Khalifa 等人 2020;Summerville 等人 2017;Gravina 等人 2019;Kingma 和 Welling 2013;Karras、Laine 和 Aila 2018)。这些技术可以快速分析和创建高质量的内容(视觉效果、音频、关卡甚至游戏)(Rebouc¸as Serpa 和 Formico Rodrigues 2019;Torrado 等人 2019;Guzdial 和 Riedl 2018;Hoover 等人 2015;Cook、Colton 和 Gow 2017)。《全境封锁 2》(Ubisoft 2019)和《无主之地》系列(Gearbox-Software 2020)等游戏采用了其中一些方法。然而,它们在游戏行业的应用并不广泛。此外,某些类型的内容(如关卡)比其他类型的内容(如视觉效果)更有影响力,而视觉效果正是我感兴趣的内容。我建议
政策 CS01 实现可持续发展 �� ... �� ... CS09 可持续利用贝克斯利的资源 ����������������������������������������������������������������������������������������������64 政策 CS10 住房需求 ������������������������������������������������������������������������������������������������������������������������67 政策 CS11 吉普赛人和旅行者住宿 ������������������������������������������������������������������������������������������������������������70 政策 CS12 贝克斯利未来的经济贡献 ��������������������������������������������������������������������������������������������������������71 政策 CS13 获得就业机会 ������������������������������������������������������������������������������������������������������������������������������������������������������������73 政策 CS14 市中心活力和生存能力 ������������������������������������������������������������������������������������������������������������������76 政策 CS15 实现综合可持续的交通系统 ��������������������������������������������������������������������������������80 政策 CS16 减少出行需求和出行影响 ��������������������������������������������������������������������������������������83 政策 CS17 绿色基础设施 �� ... ������������������������������������������������������99
指标,例如网络大小,培训时间和生成数据的质量。此外,还研究了潜在的数学,并与gan和vaes的理论基础有关。2。相关的生成模型近年来一直是机器学习领域的重要研究的主题,具有生成的对抗网络(GAN)和变异自动编码器(VAE)是两种最广泛使用的技术。几项研究比较了gan和vaes在不同的数据集和应用程序上的性能,其中一些报道了gan的结果更好(Karras等,2019),而其他人则报告了VAE的更好结果(Bowman等,2019)。该领域最有影响力的论文包括Goodfellow等人。的(2014年)引入了GAN框架,以及Kingma and Welling(2014)的VAE框架的引入,这些框架已在随后的作品中广泛引用。Salimans等。的(2016)论文提出了稳定gan训练的技术,例如为发电机和歧视者使用不同的学习率,而Chen等人。(2016)提出了对GAN框架的修改,该修改允许学习可解释的表示形式。Mescheder等。的(2017)论文提出了一个结合了VAE和gans强度的混合模型,以及Arjovsky等。的(2017)论文提出了对GAN框架的修改,该框架将Wasserstein距离用作目标函数,从而进行了更稳定的训练。Kumar等。 3。 每个Kumar等。3。每个的(2019年)论文提出了对GAN框架的修改,该框架在歧视者中引入了瓶颈,从而提高了性能,而Shen等人则进行了改善。的(2020)论文提出了一种在gan的潜在空间中发现可解释方向的方法,从而可以控制生成的图像的特定属性。方法论3.1数据集我们从MNIST数据集中应用了60,000张培训照片和10,000个手写数字的测试图像。
coimbatore。3 Wayanad苏丹·贝瑟里(Sultan Bathery)唐·博斯科学院(Don Bosco College)数学系助理教授。 抽象的梦立是人工智能中的一个新兴领域,旨在通过计算模型复制人类梦的经验。 本文比较了用于梦想生成的各种AI算法,评估其性能,创造力和计算效率。 我们探索生成的对抗网络(GAN),变化自动编码器(VAE)和基于变压器的模型,提供了对其优势和劣势的全面分析。 我们的结果表明,每个模型都有独特的优势,这表明了未来研究的潜在混合方法。 关键字:梦幻,AI,GAN,VAE,变形金刚,创造力,连贯性,计算效率,FID,IS,EEG信号。 I. 引言梦想已经迷住了人类已经有几个世纪了,通常被视为窗户进入潜意识的思想。 近年来,人工智能在创意领域取得了长足的进步,包括文本,图像和音乐的产生。 使用AI的梦幻发电试图模拟梦境的体验,创造出模仿人类梦的新颖而富有想象力的成果。 本文旨在比较该领域中领先的AI算法,重点是它们产生连贯和创造性的梦想的能力。 II。 文献综述A. Goodfellow等人引入的生成对抗网络(GAN),甘恩由两个神经网络组成,一个生成器和一个鉴别器,它们通过对抗过程同时训练。 iii。3 Wayanad苏丹·贝瑟里(Sultan Bathery)唐·博斯科学院(Don Bosco College)数学系助理教授。抽象的梦立是人工智能中的一个新兴领域,旨在通过计算模型复制人类梦的经验。本文比较了用于梦想生成的各种AI算法,评估其性能,创造力和计算效率。我们探索生成的对抗网络(GAN),变化自动编码器(VAE)和基于变压器的模型,提供了对其优势和劣势的全面分析。我们的结果表明,每个模型都有独特的优势,这表明了未来研究的潜在混合方法。关键字:梦幻,AI,GAN,VAE,变形金刚,创造力,连贯性,计算效率,FID,IS,EEG信号。I.引言梦想已经迷住了人类已经有几个世纪了,通常被视为窗户进入潜意识的思想。近年来,人工智能在创意领域取得了长足的进步,包括文本,图像和音乐的产生。使用AI的梦幻发电试图模拟梦境的体验,创造出模仿人类梦的新颖而富有想象力的成果。本文旨在比较该领域中领先的AI算法,重点是它们产生连贯和创造性的梦想的能力。II。 文献综述A. Goodfellow等人引入的生成对抗网络(GAN),甘恩由两个神经网络组成,一个生成器和一个鉴别器,它们通过对抗过程同时训练。 iii。II。文献综述A. Goodfellow等人引入的生成对抗网络(GAN),甘恩由两个神经网络组成,一个生成器和一个鉴别器,它们通过对抗过程同时训练。iii。gan已在图像生成,样式传输和创造性的创建中广泛使用[1]。B. Kingma和Welling提出的变异自动编码器(VAE)VAE是通过变异推断学习数据的基本分布的生成模型[2]。它们已应用于各种任务,包括图像和视频生成,提供了生成概率的方法。C.基于变压器的模型变压器,尤其是基于Vaswani等人引入的架构的变压器,已经彻底改变了自然语言处理。诸如GPT-3和DALL-E之类的模型利用变压器来生成具有显着连贯性和创造力的文本和图像[3]。方法论
这篇论文以及我超越了它的所有工作,都是我收到的令人难以置信的指导和支持的产物,以及我整个学术界都建立了持久的友谊。我不能充分强调生活中人们启发我的多种方式。对这些人,我表达了我最深切的感激之情。首先,我绝对必须承认我的主管理查德·泽梅尔(Richard Zemel)。Rich无论多么愚蠢,Rich都会毫不犹豫地接受一个新的想法。他会很高兴地跳入一个新的未知领域的深处,成为一名专家,并通过出色的建议帮助我。除此之外,Rich是一个令人难以置信的榜样。他以极大的谦卑来承担自己的态度,并尊重周围的每个人。我很幸运有机会与他合作,我希望在我的职业生涯中,我甚至可以像他一样成为一位好导师。我要感谢我的监督委员会,Geo Que Rey Hinton和Brendan Frey在我的学位上提供了出色的反馈和支持。我有幸与布伦丹(Brendan)合作进行了多个项目,并且总是因他不断的热情和敏锐的想法而充满活力。我很幸运能够与Geo Q.合作。他的直觉和对任何问题的核心见解的能力令人震惊,但更重要的是他的慷慨和他对待周围的人的方式。我也很幸运能够与许多优秀的教授一起工作,包括Sanja Fidler,Toniann Pitassi,Ruslan Salakhutdinov和Raquel Urtasun。我还要感谢我的外部审查员Max Welling对本文的周到和有见地的评论。我很幸运能在学位期间拥有其他几位出色的导师。早些时候,我与丹尼·塔洛(Danny Tarlow)合作,他帮助我建立了研究势头,并在工作中达到了新的成熟水平。后来,我与Jasper Snoek合作,Jasper Snoek的工作道德,新颖的见解和自制啤酒导致了构成本论文基础的论文。在所有这些过程中,我很荣幸能够与瑞安·亚当斯(Ryan Adams)合作,瑞安·亚当斯(Ryan Adams)负责我在贝叶斯优化方面的大部分工作。瑞安继续以他的广度和知识以及他的仁慈和敏感性使我感到惊讶。我要感谢我的前顾问Nando de Freitas,他将我带入了机器学习的世界,并在硕士学位期间为我提供了建议,在我毕业后将我带回了机器学习的世界,并一直是今天的好朋友。也许我在学术界期间最大的方面是我与之合作,与之交往和处理的一群朋友。这些人毫无意义,聪明,真诚,并驱使我将标准设置为尽可能高的标准。
工业中的过程控制(Huang et al., 2023; Liu et al., 2023; Zhang R. et al., 2023)。受益于信号处理和深度学习(DL)的进步,BCI 的一个突出子集是脑电图 (EEG)(Gao and Mao, 2021; Zhao et al., 2022; Li H. et al., 2023)。EEG 技术主要用于识别和分类运动想象 (MI) 信号,这对中风患者等行动障碍者来说是一种重要的辅助手段。EEG 的高精度、实时响应和成本效益使其有别于其他神经成像技术,如脑磁图和功能性磁共振成像(Huang et al., 2021; Mirchi et al., 2022; Tong et al., 2023)。传统的 MI-EEG 分类算法采用空间解码技术,利用从头皮记录的多通道 EEG 数据来识别运动意图 (Xu et al., 2021)。为了对来自多通道 MI-EEG 的信号进行分类,已经提出了各种方法,有效地捕捉它们的时间、频谱和空间特征 (Tang et al., 2019; Wang and Cerf, 2022; Hamada et al., 2023; Li Y. et al., 2023)。鉴于 EEG 信号的节律性和非线性特性,已经提出了几种利用小波调制和模糊熵的特征提取技术。 Grosse(Grosse-Wentrup and Buss,2008)介绍了一种结合公共空间模式 (CSP) 进行空间滤波和降低维数的方法,并辅以滤波器组技术将空间细化信号划分为多个频率子带。同样,Malan 和 Sharma(2022)开发了一个基于双树复小波变换的滤波器组,将 EEG 信号分离为子带。将 EEG 信号分割成这些子带后,通过 CSP 从每个子带得出空间特征,随后采用监督学习框架进行细化。Fei 和 Chu(2022)提出了一种利用相空间和小波变换的多层孪生支持向量机。尽管这些方法具有潜力,但它们忽略了电极之间的拓扑关系,因此需要进一步优化以提高 MI 分类准确性。认识到神经科学对脑网络动力学和神经信号传播机制的日益重视,图卷积网络 (GCN) 已被引入用于解码 EEG 信号(Wang 等人,2021;Du G. 等人,2022;Gao 等人,2022)。然后 Kipf 和 Welling(2016)将图论和深度学习结合起来以捕捉节点之间的关系。巧合的是,Hinton(2022)提出的神经传递领域的一个突破性概念前向-前向 (FF) 机制正在引起人们的关注。该机制提供了一种有效的方法来处理神经网络中的序列数据,而无需存储神经活动或暂停以进行错误传播。我们的研究旨在将 FF 机制与 GCN 相结合,用于基于 EEG 的 BCI,从而在运动意象分类方面取得重大进展。在研究中,我们提出了一种创新的 F-FGCN 框架用于 MI 分类。我们研究的突出贡献如下:
扩散概率模型 扩散概率模型是一类潜在变量模型,常用于图像生成等各种任务(Ho 等人,2020 年)。正式而言,扩散概率模型通过对数据点在潜在空间中扩散的方式进行建模来捕获图像数据,这是受统计物理学启发的。具体来说,它们通常使用经过变分推理训练的马尔可夫链,然后逆转扩散过程以生成自然图像。一个值得注意的变体是稳定扩散(Rombach 等人,2022 年)。扩散概率模型也用于 DALL-E 和 Midjourney 等商业系统。生成对抗网络 GAN 是一类具有自定义对抗学习目标的神经网络架构(Goodfellow 等人,2014 年)。GAN 由两个以零和博弈形式相互竞争的神经网络组成,从而生成特定分布的样本。正式来说,第一个网络 G 称为生成器,用于生成候选样本。第二个网络 D 称为鉴别器,用于评估候选样本来自期望分布的可能性。得益于对抗性学习目标,生成器学习从潜在空间映射到感兴趣的数据分布,而鉴别器则将生成器生成的候选样本与真实数据分布区分开来(见图 2)。(大型) 语言模型 (大型) 语言模型 (LLM) 是指用于建模和生成文本数据的神经网络,通常结合了三个特征。首先,语言模型使用大规模、顺序神经网络(例如,具有注意力机制的 Transformer)。其次,神经网络通过自我监督进行预训练,其中辅助任务旨在学习自然语言的表示而不存在过度拟合的风险(例如,下一个单词预测)。第三,预训练利用大规模文本数据集(例如,维基百科,甚至多语言数据集)。最终,语言模型可以由从业者使用针对特定任务(例如,问答、自然语言生成)的自定义数据集进行微调。最近,语言模型已经发展成为所谓的 LLM,它结合了数十亿个参数。大规模 LLM 的突出例子是 BERT(Devlin 等人,2018 年)和 GPT-3(Brown 等人,2020 年),分别具有 ∼ 3.4 亿和 ∼ 1750 亿个参数。提示是语言模型的特定输入(例如,“这部电影很精彩。从人类反馈中进行强化学习 RLHF 从人类反馈中学习顺序任务(例如聊天对话)。与传统强化学习不同,RLHF 直接从人类反馈中训练所谓的奖励模型,然后将该模型用作奖励函数来优化策略,该策略通过数据高效且稳健的算法进行优化(Ziegler 等人,2019 年)。RLHF 用于 ChatGPT(OpenAI,2022 年)等对话系统,用于生成聊天消息,以便新答案适应之前的聊天对话并确保答案符合预定义的人类偏好(例如长度、风格、适当性)。提示学习 提示学习是一种 LLM 方法,它使用存储在语言模型中的知识来完成下游任务(Liu 等人,2023 年)。一般而言,提示学习不需要对语言模型进行任何微调,这使其高效且灵活。情绪:“),然后选择最可能的输出 s ∈{“positive”,“negative”} 而不是空间。最近的进展允许更复杂的数据驱动提示工程,例如通过强化学习调整提示(Liu et al.,2023)。seq2seq 术语序列到序列(seq2seq)是指将输入序列映射到输出序列的机器学习方法(Sutskever et al.,2014)。一个例子是基于机器学习的不同语言之间的翻译。此类 seq2seq 方法由两个主要组件组成:编码器将序列中的每个元素(例如,文本中的每个单词)转换为包含元素及其上下文的相应隐藏向量。解码器反转该过程,将向量转换为输出元素(例如,来自新语言的单词),同时考虑先前的输出以对语言中的模型依赖关系进行建模。seq2seq 模型的思想已得到扩展,以允许多模态映射,例如文本到图像或文本到语音的映射。Transformer Transformer 是一种深度学习架构(Vaswani 等,2017),它采用自注意力机制,对输入数据的每个部分的重要性进行不同的加权。与循环神经网络 (RNN) 一样,Transformer 旨在处理顺序输入数据(例如自然语言),可用于翻译和文本摘要等任务。但是,与 RNN 不同,Transformer 会一次性处理整个输入。注意力机制为输入序列中的任何位置提供上下文。最终,Transformer(或一般的 RNN)的输出是文档嵌入,它呈现文本(或其他输入)序列的低维表示,其中相似的文本位于更近的位置,这通常有利于下游任务,因为这允许捕获语义和含义 (Siebers et al., 2022)。变分自动编码器 变分自动编码器 (VAE) 是一种神经网络,它被训练来学习输入数据的低维表示,方法是将输入数据编码到压缩的潜在变量空间中,然后从该压缩表示中重建原始数据。VAE 与传统自动编码器的不同之处在于,它使用概率方法进行编码和解码过程,这使它们能够捕获数据中的底层结构和变化,并从学习到的潜在空间中生成新的数据样本 (Kingma and Welling, 2013)。这使得它们不仅可用于异常检测和数据压缩等任务,还可用于图像和文本生成。零样本学习/小样本学习 零样本学习和小样本学习是指机器学习处理数据稀缺问题的不同范例。零样本学习是指教会机器如何从数据中学习一项任务,而无需访问数据本身,而小样本学习是指只有少数特定示例的情况。零样本学习和小样本学习在实践中通常是可取的,因为它们降低了建立 AI 系统的成本。LLM 是小样本或零样本学习器(Brown 等人,2020 年),因为它们只需要一些样本即可学习一项任务(例如,预测评论的情绪),这使得 LLM 作为通用工具具有高度灵活性。
宏基因组学是对直接从土壤,水和肠道含量等环境样品中提取的遗传物质的研究,而无需隔离单个生物。该领域使用宏基因组学框来根据相似性将DNA序列分为组。目标是将这些序列分配给其相应的微生物或分类群,从而更深入地了解样本中的微生物多样性和功能。计算方法(例如序列相似性,组成和其他特征)用于分组。宏基因组学的方法包括:基于序列组成的binning,它分析了不同基因组中的不同模式;基于覆盖范围的binning,它使用测序深度将分组读取为垃圾箱;混合式分子,结合了两种方法以提高准确性;基于聚类的封装,可用于高基因组多样性数据集;和基于机器学习的封装,需要带注释的参考基因组进行培训。每种方法都有其优势和局限性,其选择取决于特定的元基因组数据集和研究问题。宏基因组学箱很复杂。2017年,本教程将涵盖元基因组式融合工具,以及咖啡发酵生态系统和metabat 2算法metabat的数据生成MAGS,可以轻松地与下游分析和工具集成,例如分类学注释和功能预测。已经对六个样本进行了测序,生成了6个用于咖啡发酵系统的原始数据集。2。宏基因组套件是分析复杂的微生物群落的关键步骤,但面临着几个挑战,包括水平基因转移污染危险嵌合序列和Maxbin Metabat mycc mycc mycc groopm groopm metawrap anvi'o semibin of de nove bin bin bin bin bin bin bin bin bin bin bin的物种计算工具中的物种计算工具中的应变变化,例如已显示出高度准确的有效扩展和用户友好的基准研究发现,Metabat 2在准确性和计算效率方面都优于其他替代方案,以提供有关宏基因组学软件的更多信息,请参见Sczyrba等。使用Illumina MiSeq全基因组测序进行了六次颞枪i弹枪元基因组研究,以全面分析咖啡微生物组的结构和功能。我们基于这些现实世界数据为本教程创建了模拟数据集。我们将介绍本教程中的以下主题:准备分析历史记录和数据,将metabat 2运行到bin元基因组测序数据。要运行binning,我们首先需要将数据纳入Galaxy,任何分析都应具有自己独特的历史记录。让我们通过单击历史记录面板的顶部创建一个新的历史记录并重命名它。要将序列读取数据上传到星系中,您可以直接从计算机导入它,也可以使用这些链接从Zenodo或数据库中获取它:等等。首先,创建一个名为GTN的文件夹 - 带有主题名称和教程名称的子文件夹的材料。选择所需的文件要从顶部附近的下拉菜单中导入。3。通过在弹出窗口中选择“选择历史记录”,选择要导入数据(或创建新数据)的历史记录。通过重命名示例名称的读取对创建配对集合,然后按照以下步骤:检查所有要包含的数据集,并通过单击“数据集对构建列表”来构建数据集对列表。将未配对的前进和反向读取文本更改为每对的常见选择器。单击“配对这些数据集”以进行有效的前进和反向对。输入一个集合名称,然后单击“创建列表”以构建集合。binning有几个挑战,包括高复杂性,碎片序列,不均匀的覆盖率,不完整或部分基因组,水平基因转移,嵌合序列,应变变异和开放图像1:binning。在本教程中,我们将通过Galaxy使用Metabat 2(Kang等,2019)来学习如何键入元基因组。metabat是“基于丰度和四核苷酸频率的元基因组binning的工具”,该工具将shot弹枪元基因组序列组装到微生物群落中。它使用基因组丰度和四核苷酸频率的经验概率距离来达到98%的精度,并在应变水平下以281个接近完全独特的基因组为准。我们将使用上传的汇编FastA文件作为Metabat的输入,为简单起见保留默认参数。设置为“否”。在输出选项中,“垃圾箱的最小尺寸作为输出”设置为200000。对于ERR2231567样品,有6个箱子,将167个序列分类为第二箱。手:1。4。该工具将在Galaxy版本1.2.9+Galaxy0中使用这些参数:“包含重叠群的Fasta文件”汇编FASTA文件; “考虑融合的良好重叠群的百分比”设置为95; “ binning边缘的最低分数”为60; “每个节点的最大边数”为200; “构建TNF图的TNF概率截止”为0;和“关闭丢失还是小重叠的额外的押金?”The output files generated by MetaBAT 2 include (some are optional and not produced unless required): - Final set of genome bins in FASTA format (.fa) - Summary file with info on each genome bin, including length, completeness, contamination, and taxonomy classification (.txt) - File with mapping results showing contig assignment to a genome bin (.bam) - File containing abundance estimation of each genome bin (.txt) - 每个基因组bin(.txt)的覆盖曲线的文件 - 每个基因组bin的核苷酸组成(.txt) - 文件具有每个基因组bin(.faa)的预测基因序列(.faa)的基因序列,可以进一步分析和用于下游应用,例如功能性注释,相比的植物组合和化学分析,并可以用于下游应用。去复制是识别基因组列表中“相同”的基因组集的过程,并从每个冗余集中删除除“最佳”基因组之外的所有基因组。在重要概念中讨论了相似性阈值以及如何确定最佳基因组。基因组去复制的常见用途是元基因组数据的单个组装,尤其是当从多个样本中组装简短读数时(“共同组装”)。这可能会导致由于组合类似菌株而导致碎片组件。执行共同组装以捕获低丰度微生物。另一种选择是分别组装每个样品,然后去重新复制箱以创建最终的基因组集。metabat 2不会明确执行放松,而是通过利用读取覆盖范围,样品差异覆盖范围和序列组成来提高构架准确性。DREP等工具的设计用于宏基因组学中的复制,旨在保留一组代表性的基因组,以改善下游分析。评估:DREP评估集群中每个基因组的质量,考虑到完整性,污染和应变异质性等因素。基因组选择:在每个群集中,DREP根据用户定义的标准选择代表性基因组。该代表性基因组被认为是群集的“翻译”版本。放松输出:输出包括有关消除基因组的信息,包括身份,完整性和污染。用户可以选择基因组相似性的阈值,以控制删除水平。使用您喜欢的汇编程序分别组装每个样本。bin每个组件分别使用您喜欢的Binner。bin使用您喜欢的Binner共同组装。5。将所有组件中的垃圾箱拉在一起,然后在它们上运行DREP。6。在解复的基因组列表上执行下游分析。检查质量:1。一旦完成,必须检查其质量。2。可以使用CheckM(Parks等,2015)评估binning结果,这是一种用于元基因组学框的软件工具。3。2。检查通过将基因组仓与通用单拷贝标记基因进行比较,评估了基因组仓的完整性和污染。宏基因组学:1。宏基因组学将DNA碎片从混合群落分离为单个垃圾箱,每个垃圾箱代表一个独特的基因组。checkm估计每个基因组箱的完整性(存在的通用单拷贝标记基因集的总数)和污染(在一个以上bin中发现的标记基因的百分比)。关键功能:1。基因组完整性的估计:CheckM使用通用单拷贝标记基因来估计回收基因组的比例。2。基因组污染的估计:CHECKM估计多个箱中存在的标记基因的百分比,表明来自多种生物的潜在DNA。3。识别潜在的杂料:CheckM基于基因组的标记基因分布来识别杂种。4。结果的可视化:CheckM生成图和表,以可视化基因组垃圾箱的完整性,污染和质量指标,从而使解释更加容易。checkm也可以根据与不同分类学组相关的特定标记基因(例如sineage_wf:评估使用谱系特异性标记集对基因组垃圾箱的完整性和污染)进行分类分类的基因组分类。checkm lineage_wf工作流使用标记基因和分类信息的参考数据库来对不同分类学水平的基因组垃圾箱进行分类。来源:-Turaev,D。,&Rattei,T。(2016)。(2014)。使用metabat 2的元基因组重叠群构造教程强调了选择最合适的binning工具的重要性。不同的方法具有不同的优势和局限性,具体取决于所分析的数据类型。通过比较多种封装技术,研究人员可以提高基因组融合的精度和准确性。可用于元基因组数据,包括基于参考的,基于聚类的混合方法和机器学习。每种方法都有其优点和缺点,从而根据研究问题和数据特征使选择过程至关重要。比较多种封装方法的结果有助于确定特定研究的最准确和最可靠的方法。在完整性,污染和应变异质性方面评估所得垃圾箱的质量至关重要。另外,比较已识别基因组的组成和功能谱可以提供有价值的见解。通过仔细选择和比较binning方法,研究人员可以提高基因组箱的质量和可靠性。这最终导致对微生物群落在各种环境中的功能和生态作用有了更好的了解。微生物群落系统生物学的高清晰度:宏基因组学以基因组为中心和应变分辨。- Quince,C.,Walker,A。W.,Simpson,J。T.,Loman,N。J.,&Segata,N。(2017)。shot弹枪宏基因组学,从采样到分析。-Wang,J。和Jia,H。(2016)。元基因组范围的关联研究:微生物组细化。-Kingma,D。P.和Welling,M。(2014年)。自动编码变分贝叶斯。-Nielsen,H。B.等。鉴定和组装基因组和复杂元基因组样品中的遗传因素,而无需使用参考基因组。-Teeling,H.,Meyerdierks,A.,Bauer,M.,Amann,R。,&Glöckner,F。O.(2004)。将四核苷酸频率应用于基因组片段的分配。-Alneberg,J。等。(2014)。通过覆盖范围和组成的结合元基因组重叠群。-Albertsen,M。等。(2013)。通过多个元基因组的差异覆盖层获得的稀有,未培养细菌的基因组序列。-Kang,D.D.,Froula,J.,Egan,R。,&Wang,Z。(2015)。metabat,一种有效的工具,用于准确地重建来自复杂微生物群落的单个基因组。simmons b a和singer s w提出了一种新算法,称为Maxbin 2.0,用于2016年生物信息学期刊中多个元基因组数据集的binning基因组。此外,Kang等人开发了Metabat 2,一种自适应binning算法,该算法于2019年在Peerj发表。PlazaOñate等人引入了MSPMiner,这是一种从shot弹枪元基因组数据重建微生物泛元组的工具,如2019年的生物信息学报道。Other studies like those of Lin and Liao, Chatterji et al, Parks et al, Pasolli et al, Almeida et al, Brooks et al, Sczyrba et al, Qin et al, Bowers et al, Sieber et al, Cleary et al, Huttenhower et al, Saeed et al, and Pride et al have also contributed to the development of metagenomics tools and approaches for genome recovery.这些发现表明,宏基因组分析和计算方法的最新进展使研究人员能够从环境样本中恢复几乎完整的基因组。本文讨论了有关宏基因组学的各种研究,这是对特定环境中多种生物的遗传物质的研究。研究集中于人类肠道微生物组及其在不同人群和年龄之间的组成。引用了几篇论文,其中包括Chen等人的论文。(2020),他开发了一种从宏基因组获得准确而完整的基因组的方法。Daubin等人的另一篇论文。(2003)探讨了细菌基因组中侧向转移基因的来源。本文还提到了有关人肠道微生物组的研究,包括Schloissnig等人的工作。(2013),他绘制了人类肠道微生物组的基因组变异景观。Yatsunenko等。 (2012)研究了在不同年龄和地理位置的人类肠道微生物组。 此外,本文参考了有关微生物从母亲传播到婴儿的研究,包括Asnicar等人的工作。 (2017)和Ferretti等。 (2018)。 本文还涉及宏基因组学分析中使用的机器学习和深度学习技术,例如变化自动编码器和无监督的聚类方法。 最后,本文提到了用于分析元基因组数据的软件工具,包括Li(2013)的BWA-MEM和Paszke等人的Pytorch。 (2019)。 以下是生物信息学和基因组学领域的各种研究文章的摘要。Yatsunenko等。(2012)研究了在不同年龄和地理位置的人类肠道微生物组。此外,本文参考了有关微生物从母亲传播到婴儿的研究,包括Asnicar等人的工作。(2017)和Ferretti等。(2018)。本文还涉及宏基因组学分析中使用的机器学习和深度学习技术,例如变化自动编码器和无监督的聚类方法。最后,本文提到了用于分析元基因组数据的软件工具,包括Li(2013)的BWA-MEM和Paszke等人的Pytorch。(2019)。以下是生物信息学和基因组学领域的各种研究文章的摘要。释义旨在保留原始文章的主要思想和发现,同时以更简洁和易于访问的方式介绍它们。1。**聚类**:一种用于将相似数据点分组在一起的算法,应用于基于Web的数据。2。** art **:用于下一代测序的模拟器可以模仿现实世界数据。3。** metaspades **:一种可以从混合微生物群落中重建基因组的宏基因组组装子。4。** minimap2 **:一种以高精度和速度对齐核苷酸序列的工具。5。** blat **:用于比较基因组序列的爆炸样比对工具。6。** Circos **:用于比较基因组学的可视化工具,用于显示多个基因组之间的关系。7。**高通量ANI分析**:使用平均核苷酸同一性(ANI)指标估算原核基因组之间距离的方法。8。** checkm **:一种评估微生物基因组完整性和污染的工具。9。** BLAST+**:具有改进功能和用户界面的BLAST算法的更新版本。10。** mash **:使用Minhash估算基因组或元基因组距离的工具。11。**浪子**:原核基因组的基因识别和翻译起始位点识别工具。12。** InterPro 2019 **:蛋白质序列注释的InterPro数据库的更新,具有改进的覆盖范围和访问功能。13。14。15。16。**控制虚假发现率**:一种用于管理生物信息学研究中多种假设检验的统计方法。** checkv **:一种用于评估元基因组组装的病毒基因组质量的工具。**使用深度学习从宏基因组数据中识别病毒**:使用机器学习从混合微生物群落中检测病毒的研究。**标准化的细菌分类法**:基于基因组系统发育的细菌进行分类的新框架,该细菌修改了生命之树。17。** gtdb-tk **:一种用于与基因组分类学数据库(GTDB)分类的工具包。18。** iq-Tree **:使用快速有效算法估算最大可能的系统发育的工具。这些摘要概述了生物信息学和基因组学领域的各种研究文章,突出显示了与序列比对,组装,注释和系统发育有关的工具,方法和研究。最新的多个序列对齐软件的进步显着提高了D. M. Mafft版本7,Modelfinder,Astral-III,UFBOOT2,Life V4和APE 5.0等工具的性能和可用性。这些工具通过引入新颖特征,例如快速模型选择,多项式时间种树重建,超快的自举近似和交互式可视化来提高系统发育估计值的准确性。这些软件包的整合已简化了构建进化树的过程,使研究人员可以更轻松地探索复杂的系统发育关系。