鱼溪和扬帕井处理厂改进项目 - 第 2B 阶段 - 完工 扬帕井在关闭期间作为唯一水源 科罗拉多州斯廷博特斯普林斯 - 2025 年 1 月 22 日 - 鱼溪处理厂第 2B 阶段改进工程完成后,水又自由流动了,该处理厂于 2024 年 12 月中旬恢复服务。扬帕井设施将在 1 月 31 日前完成改进,并将在夏季灌溉季节开始前恢复运营。“我要感谢居民在关闭期间为减少用水和安装这些关键改进措施所做的努力,”Mount Werner Water 总经理 Frank Alfone 说。“这些改进措施进一步保护了工厂和社区的水源,以防鱼溪排水系统发生野火或工厂发生其他重大灾难性事件。”作为第 2B 阶段的一部分,鱼溪处理厂关闭了三个月(9 月 16 日至 12 月 16 日)。该项目包括在两个地点实施新的化学进料系统和水质监测设备,以符合科罗拉多州公共卫生与环境部批准的最佳腐蚀控制处理 (OCCT)。Fish Creek 的 OCCT 包括添加熟石灰和二氧化碳 (CO2) 以增加碱度和溶解无机碳 (DIC),以及正磷酸盐 (磷酸) 作为腐蚀抑制剂。Yampa Wells 的 OCCT 包括添加苛性钠以调节 pH 值和正磷酸盐 (磷酸) 作为腐蚀抑制剂。此外,Fish Creek 处理厂还增加了大型设备,安装了一台新的备用发电机,能够为所有当前和未来的系统负载供电。现有的旧发电机同时被拆除。一个新的 CO2 罐和石灰筒仓储存容器完善了硬件添加。同年,Yampa Wells 第二次被要求在项目期间作为城市和地区饮用水需求的唯一水源。 Yampa 水井运行高效,进一步增强了人们在紧急情况下长期使用它们的信心。“去年,社区在 2B 阶段努力节约用水,使项目更加顺利,”该市配送和收集经理 Michelle Carr 说道。“众所周知,水在我们地区是一种极其宝贵的商品,无论是否停水,我们每天尽一切努力节约用水都将对我们未来大有裨益。”
摘要。水质是计划使用水时的必要条件。从这个意义上讲,对其质量的评估和认可至关重要。本文涉及普里斯蒂纳市的井水质量。为了实现这项工作的目标,在2022年8月和9月,在四口井中取水,以分析水的物理,化学和微生物参数。研究工作和获得的结果表明;从四个样品中分析的水井没有浊度和氯的存在迹象。发现温度,pH,总硬度,溶解氧,亚硝酸盐,硝酸盐,硫酸盐,锰和氨的值在管理指令号10/2021,而铁显示较高的值(高于允许的值)。水中参数的高价值使其无法使用,而污染水的使用会给社区带来健康问题。因此,对于政策制定者和饮用水服务提供商来说,对用于公共消费的水的质量和数量的永久监测应是一个重点。关键词:水质,物理化学特性,Pristina-Kosovo,生物学参数。
半导体量子井(QW)中的subband(ISB)转变引起了很多关注,因为它们的潜在应用到了在THZ的中和远红外光谱区域工作的光电设备中。在过去30年中,这为开发量子级联激光器(QCLS)[1]和红外检测器的开发铺平了道路,要么以光导电模式(例如量子井红外光电探测器(qWIPS))[2]或在诸如potovaltaic mode中的Quantum casccade detectors(QCC)[3] [3] [3] [3]。的确,当建立ISB跃迁与微腔中的Photonic模式之间的强相互作用时,被称为ISB极化子出现的准粒子出现了[4] - [7]。这样的ISB极性不仅对基本物理学很有趣,而且还允许实施具有
• 考察当前和新兴的封堵和废弃技术、最佳实践、设备和材料,用于井描述、井筒封堵和屏障放置、井筒完整性和验证以及耐久性和使用寿命。本次考察将考虑美国国家科学院关于“封堵孤立和废弃碳氢化合物井的实践和标准”研讨会的信息。 • 评估需要不同标准和标准的意外或特殊情况,包括工程设计、成本、物流或技术管理。 • 评估有关封堵故障的潜在原因、频率、后果和补救措施的可用数据。 • 考察封堵后监测技术、方法和技术,这些技术对于长期保护环境和公共健康和安全非常重要或将非常重要。包括任何已确定的封堵后风险管理最佳实践,以确保长期保护地下水和防止甲烷排放以及相关的经济考虑。 • 确定值得进一步研究并可能有助于行业、州、部落和联邦机构成功完成封井和废弃工作的技术、材料或政策。
重要提示:带有下拉列表的字段必须与下拉列表中的字段完全相同地输入到 Excel 文件中。因此,必须以大写形式输入,否则表单将无法上传文件。重要提示:如果您需要在任何选项卡中添加一行,则必须在下载 Excel 文件之前执行此操作,方法是单击“编辑”并在每个选项卡下的任何孔中添加适当数量的行,然后下载 Excel 文件。d. 使用下载时使用的文件名保存文件。
关于作者:Digiulio博士是美国环境保护署的退休地球科学家。他已经进行了研究:从蓄水到地下水到地下水的漏水,产生的水,冷凝水和钻孔液的挥发性有机化合物的排放,水力破裂,地下甲烷和二氧化碳的碳化气(流动气体)的Indorface vapior sissurface vapior a Indorfer Froffore vapior vabierface in Indorface vapior sissurface vabiors in Indorface vabiors in Inderface vabiors in Indorface Vabiers(vapierface in Indorface Vabiers insuberface)污染地下水(污染地下水)。修复(土壤真空提取,生物电视),地下水采样方法,土壤气体采样方法,气体渗透性测试以及污染物在土壤中的溶质转运。他协助开发了EPA关于蒸气侵入的原始指南,以及EPA关于二氧化碳地质隔离的VI类规则。他曾是与石油和天然气开发有关的诉讼专家证人,在国家石油和天然气委员会对拟议法规之前作证,并在国会向国会作证,就石油和天然气开发对水资源的影响。他的咨询服务包括有关:流浪甲烷气体迁移,路易斯安那州的地质碳存储,在解决方案洞穴中存放天然气液体,在科罗拉多州的拟建石油和天然气法规,从俄亥俄州,爱达荷州和佛罗里达州的II类处置井中对地下水的水资源产生的油和天然气,沿俄亥俄州的水上运输,沿水,欧洲河水运输,欧洲河水运输,提议的河流运输公司的水上运输,供应欧洲河流,提议的运输公司的运输公司的运输业是源头的运输。怀俄明州,蒙大拿州和科罗拉多州的租赁。
其中,我们计算形成量子阱的平面数 ( n qw ) 并乘以 d qw 。因此,厚度测量的预期不确定性在于是否考虑了阱的初始平面和最后一个平面,即标准偏差由 σ = 2 d qw 给出。考虑到这一点,对于异质结构 B,其中 x = 0.31,在量子阱的不同区域 n qw = 33(3 次)和 34 进行了四次不同的测量,计数(002)平面。在平均实验 δ 为 -1.6±0.2 % 的情况下,我们得到 d qw = 2.704±0.007 Å,从而得到平均厚度 t qw = 9.0±0.5 nm。对于异质结构 C,x = 0. 31 并进行了两次计数 (002) 面的测量,n qw = 19 和 20。根据平均实验 δ -1.7±0.5 %,我们获得 d qw = 2 . 701 ± 0 . 014 Å,从而得出平均厚度 t qw = 5 . 3 ± 0 . 5 nm。
内政部土地管理局佩科斯区卡尔斯巴德外地办事处 620 E Greene Street Carlsbad, NM 88220 电话:(575) 887-6544 传真:(575) 885-9264 2017 年 11 月 13 日 保密政策 您提交的任何评论(包括受访者的姓名和街道地址)都可能供公众查阅。个别受访者可要求保密。如果您希望不让公众查阅或根据《信息自由法》不披露您的姓名或街道地址,则必须在书面评论的开头明确说明。在法律允许的范围内,我们将尊重此类请求。来自组织或企业以及自称是组织或企业代表或官员的个人的所有提交内容都将完整地供公众查阅。
* 通讯作者:Michele Ortolani,意大利理工学院生命纳米与神经科学中心,Viale Regina Elena 291,00161 罗马,意大利;以及罗马大学物理系,Piazzale Aldo Moro 2, 00185 Rome, Italy,电子邮件:michele.ortolani@roma1.infn.it。 https://orcid.org/0000-0002-7203-5355 Elena Campagna、Enrico Talamas Simola、Luciana Di Gaspare 和 Monica De Seta,大学科学系;罗马第三研究学院,Viale G. Marconi 446,罗马 00146,意大利,电子邮件:elena.campagna@uniroma3.it(E. Campagna),enrico.talamassimola@uniroma3.it(E. Talamas Simola)。 https://orcid.org/0000-0001-7121-8806(E. Campagna)。 https://orcid.org/0000-0001-5468-6712 (E. Talamas Simola) Tommaso Venanzi,意大利理工学院生命纳米与神经科学中心,Viale Regina Elena 291, 00161 罗马,意大利,电子邮件:tommaso.venanzi@uniroma1.it Fritz Berkmann 和 Leonetta Baldassarre,罗马大学物理系,Piazzale Aldo Moro 2, 00185 罗马,意大利,电子邮件:fritz.berkmann@uniroma1.it (F. Berkmann) Cedric Corley-Wiciak,IHP-Leibniz 创新微电子研究所,Im Technologiepark 25,法兰克福(奥得河畔)15236,德国,电子邮件:cedric.corley@esrf.fr Giuseppe Nicotra,微电子与微系统研究所(CNR- IMM),VIII Strada 5,卡塔尼亚 95121,意大利 Giovanni Capellini,大学科学系;罗马第三研究学院,Viale G. Marconi 446,罗马 00146,意大利;以及 IHP-Leibniz 创新微电子研究所,Im Technologiepark 25,法兰克福(奥得河畔)15236,德国 Michele Virgilio,物理学系“E.费米”,大学;比萨,Largo Pontecorvo 3,比萨 56127,意大利,电子邮件:michele.virgilio@unipi.it
* 通讯作者:Michele Ortolani,意大利理工学院生命纳米与神经科学中心,Viale Regina Elena 291,00161 罗马,意大利;以及罗马大学物理系,Piazzale Aldo Moro 2, 00185 Rome, Italy,电子邮件:michele.ortolani@roma1.infn.it。 https://orcid.org/0000-0002-7203-5355 Elena Campagna、Enrico Talamas Simola、Luciana Di Gaspare 和 Monica De Seta,大学科学系;罗马第三研究学院,Viale G. Marconi 446,罗马 00146,意大利,电子邮件:elena.campagna@uniroma3.it(E. Campagna),enrico.talamassimola@uniroma3.it(E. Talamas Simola)。 https://orcid.org/0000-0001-7121-8806(E. Campagna)。 https://orcid.org/0000-0001-5468-6712 (E. Talamas Simola) Tommaso Venanzi,意大利理工学院生命纳米与神经科学中心,Viale Regina Elena 291, 00161 罗马,意大利,电子邮件:tommaso.venanzi@uniroma1.it Fritz Berkmann 和 Leonetta Baldassarre,罗马大学物理系,Piazzale Aldo Moro 2, 00185 罗马,意大利,电子邮件:fritz.berkmann@uniroma1.it (F. Berkmann) Cedric Corley-Wiciak,IHP-Leibniz 创新微电子研究所,Im Technologiepark 25,法兰克福(奥得河畔)15236,德国,电子邮件:cedric.corley@esrf.fr Giuseppe Nicotra,微电子与微系统研究所(CNR- IMM),VIII Strada 5,卡塔尼亚 95121,意大利 Giovanni Capellini,大学科学系;罗马第三研究学院,Viale G. Marconi 446,罗马 00146,意大利;以及 IHP-Leibniz 创新微电子研究所,Im Technologiepark 25,法兰克福(奥得河畔)15236,德国 Michele Virgilio,物理学系“E.费米”,大学;比萨,Largo Pontecorvo 3,比萨 56127,意大利,电子邮件:michele.virgilio@unipi.it