摘要 直接刺激灵长类动物 V1 能否替代视觉刺激并模仿其感知效果?为了解决这个问题,我们开发了一种光学遗传工具包,使用宽视野钙成像“读取”神经群体反应,同时使用光遗传学将神经反应“写入”行为猕猴的 V1。我们专注于视觉掩蔽现象,其中共定位的中等亮度掩蔽显著降低了对暗淡目标的检测(Cornsweet 和 Pinsker,1965 年;Whittle 和 Swanston,1974 年)。使用我们的工具包,我们测试了 V1 光遗传刺激是否可以重现视觉掩蔽的感知掩蔽效应。我们发现,与视觉掩蔽类似,低功率光刺激可以显著降低视觉检测灵敏度,视觉和光遗传学引起的 V1 反应之间的亚线性相互作用可以解释这种感知效应,并且这些神经和行为效应具有空间选择性。我们的工具包和结果为进一步探索通过直接刺激感觉皮层来实现感知替代打开了大门。
我们提出了一种经济高效、体积小巧、基于开源 Raspberry Pi 的宽视野成像系统。紧凑的特性使该系统可用于近距离双脑皮质中尺度功能成像,以同时观察两只头部固定的动物在分阶段的社交接触式互动中的活动。我们提供了轨道系统的所有原理图、代码和协议,其中头部固定的小鼠被带到一定距离,每只小鼠的大触须都会接触。在社交接触期之前、期间和之后,同时记录了两只小鼠的皮质神经元功能信号 (GCaMP6s;遗传编码的 Ca 2 1 传感器)。当小鼠在一起时,我们观察到了相互拂动和跨小鼠相关皮质活动的发作。在试验打乱的小鼠对中未观察到相关性,这表明相关活动特定于个体互动。在小鼠在一起(最密切接触)期间观察到与拂动相关的皮质信号。社会刺激呈现的影响延伸到与相互接触相关的区域之外,并对皮质活动产生整体同步效应。
固态量子发射器已成为量子网络应用的主要量子存储器。然而,标准的光学表征技术既不高效,也不可大规模重复。在这里,我们介绍并演示了能够大规模自动表征色心的光谱技术。我们首先展示了通过将色心注册到制造的机器可读全局坐标系来跟踪色心的能力,从而能够在多次实验中对相同的色心位置进行系统比较。然后,我们在宽视野低温显微镜中实施了反光发光激发,以并行化共振光谱,实现了比共聚焦显微镜快两个数量级的速度。最后,我们展示了在室温下对色心和设备进行自动芯片级表征,对数千个显微镜视野进行成像。这些工具将能够加速识别芯片级有用的量子发射器,从而推动扩大量子信息应用、材料科学和设备设计和表征的色心平台。
在整个大脑半球体上神经元钙通量的经颅视频中解散信号是在映射皮质组织特征之前的关键步骤。在这里我们揭示了独立的成分分析可以最佳地恢复神经信号的含量,以捕获的神经元记录,以最小采样率为1.5×10 6像素,每100毫秒框架以17分钟的速度以1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1。我们表明,从组件获得的一组空间和时间指标可用于构建一个随机的森林分类器,该分类器可自动以人为性能分离神经活动和伪影组件。使用此数据,我们建立了小鼠皮层的功能分割,以每个半球体提供〜115个域的图,其中提取的时间课程最大地表示每个记录中的基本信号。域图显示了大量的区域基序,高阶皮质区域呈现出较大的怪异结构域,而较小的圆形域则是原发性感觉区域中的较小圆形区域。数据驱动的视频分解和信号源的机器层化的工作流程可以极大地增强复杂脑动力学的高质量映射。
巴黎,法国(2025年2月11日) - Essilorluxottica促进其致力于提高行业标准并提高视力护理质量的承诺,已收购了Cellview Imaging Incing Inc,这是一家通过视网膜成像从事创新诊断的加拿大初创企业。 借助公司的专有技术,该集团正在建立更广泛的眼科仪器和解决方案组合,并追求进入Med-Tech领域的旅程。 位于多伦多,Cellview设计和制造具有固体内部研发专业知识的创新性且性能高的诊断成像工具。 目前在北美分发,Cellview的解决方案使眼睛护理的从业人员能够诊断出视网膜病理,这要归功于与大多数现有技术相比,能够捕获明显更大图像的超广场视网膜相机。 Cellview的产品提供了FDA和CE批准,并以庞大的市场为目标 - 从零售地点的眼部实践到Ophthalmology Clinics - 从欧洲开始,将分布在不同的地理位置上。 Essilorluxottica副首席执行官Paul du Saillant主席弗朗切斯科·米勒里(Francesco Milleri)评论说:“我们很高兴欢迎Cellview的团队来到Essilorluxottica,并共同努力加速我们的视觉健康战略。巴黎,法国(2025年2月11日) - Essilorluxottica促进其致力于提高行业标准并提高视力护理质量的承诺,已收购了Cellview Imaging Incing Inc,这是一家通过视网膜成像从事创新诊断的加拿大初创企业。借助公司的专有技术,该集团正在建立更广泛的眼科仪器和解决方案组合,并追求进入Med-Tech领域的旅程。位于多伦多,Cellview设计和制造具有固体内部研发专业知识的创新性且性能高的诊断成像工具。目前在北美分发,Cellview的解决方案使眼睛护理的从业人员能够诊断出视网膜病理,这要归功于与大多数现有技术相比,能够捕获明显更大图像的超广场视网膜相机。Cellview的产品提供了FDA和CE批准,并以庞大的市场为目标 - 从零售地点的眼部实践到Ophthalmology Clinics - 从欧洲开始,将分布在不同的地理位置上。Essilorluxottica副首席执行官Paul du Saillant主席弗朗切斯科·米勒里(Francesco Milleri)评论说:“我们很高兴欢迎Cellview的团队来到Essilorluxottica,并共同努力加速我们的视觉健康战略。通过将另一家开拓性的公司与研发和世界一流的成像解决方案相结合,我们将为眼科护理社区提供全面的创新技术组合,以更好地解决越来越多的愿景健康需求以及早期的视网膜病理学诊断。尽管我们的产品和服务仍然可以被所有行业参与者(作为Essilorluxottica开放商业模式的支柱)访问,但我们将继续提高市场标准,与进入Med-Tech领域的旅程完全一致”。
抽象意志 - 对自己的自愿行动的控制感或代理意识 - 被广泛认可为人类主观经验和非人类动物的自然行为的基础。几项人类研究发现,在自愿行动之前的神经活动中达到了峰值,例如准备潜力(RP),有些人甚至在意识之前就可以解码即将发生的动作。其他人提出,随机过程是基础并解释运动前神经活动的基础。在这里,我们试图通过评估小鼠运动前神经活动是否包含随机神经活动中存在的结构是否包含结构,以解决这些问题。在记录广场[Ca ++]神经活动时,实施了自发的水回水杆式杠杆范式,我们发现在移动前秒数的差异秒数的皮质活动变化可以预测3至5 s(在某些情况下在某些情况下)在移动前3和5 s之间。,我们发现在拉杆拉动之前大约5 s开始抑制运动皮层,并且在随机未经回报的左肢运动之前,从杠杆拉动和运动皮层的激活开始。我们表明,像人类一样,小鼠在神经活动的特定阶段开始进行自我启动的动作有偏见,但是在某些小鼠中,运动前神经代码会随着时间的流逝而变化,并且在使用所有和单个皮质区域时,随着行为预测的改善而被广泛分布。这些发现支持在自发动作之前的结构化多秒神经动力学的存在,而不是随机过程所期望的。我们的结果还表明,在小鼠和人类之间可以保留自启动作用的神经机制。
抽象背景/旨在开发卷积神经网络(CNN),以使用多模式视网膜图像和患者数据的组合来检测有症状的阿尔茨海默氏病(AD)。神经节细胞内丛形层(GC-ILP)的颜色图,浅表毛细血管(SCP)光学相干性断层造影血管造影(OCTA)图像以及超宽场(UWF)颜色和底面自动荧光荧光(FAF)扫描Laser ophthalmoscoppy与AD cagection cage cactition cackition caction cactition caction cactition。使用多模式的视网膜图像,OCT和八A定量数据以及患者数据开发了用于预测AD诊断的CNN。结果284位159名受试者的眼睛(来自123名认知健康受试者的222只眼睛和来自36名AD受试者的62只眼睛)用于开发模型。Area under the receiving operating characteristic curve (AUC) values for predicted probability of AD for the independent test set varied by input used: UWF colour AUC 0.450 (95% CI 0.282, 0.592), OCTA SCP 0.582 (95% CI 0.440, 0.724), UWF FAF 0.618 (95% CI 0.462, 0.773), GC-IPL地图0.809(95%CI 0.700,0.919)。模型包含所有图像,定量数据和患者数据(AUC 0.836(CI 0.729,0.943))的执行方式类似于仅包含所有图像的模型(AUC 0.829(95%CI 0.719,0.939))。GC-ipl图,定量数据和患者数据AUC 0.841(95%CI 0.739,0.943)。结论我们的CNN使用多模式视网膜图像在独立的测试集中成功预测了症状AD的诊断。GC-ipl地图是预测最有用的单个输入。模型仅包括与模型相似的图像,包括定量数据和患者数据。
通过cerkl基因突变看到的引起视网膜营养不良的北印度人口班萨尔*(1,2,3),debojyoti chakraborty(1)(1)(1)CSIR-基因组学和综合生物学研究所,德里,(2)景点研究,fortis Indiperies,fortis Indies Indive Isporties Indive Isporties Indive Indive Indive Indive Isporties Indive Indiperies,Instriped Isporties Indive Isporties Indive Isporties Indive Isporties Indive Isportion*临床特征,CERKL基因突变的基因型表型相关性,这是我们在印度北部的同类中看到的遗传性视网膜营养不良(IRD)患者的最常见基因突变之一。 材料和方法:研究包括临床诊断患有IRD的患者。 患者进行了超广阔的菲尔德(UWF)眼底照片,眼底自动荧光(FAF),光学相干断层扫描(OCT)。 完成了谱系图表。 下一代测序(NGS)进行遗传测试,分析了临床外显子组。 结果:我们报告了35例选择接受遗传测序的35例CERKL基因突变患者的眼科和遗传发现(在我们的62名22名IRD患者中)。 年龄从17至45岁(中位数25岁)不等。 视觉范围从logmar 0.18到1.8。 OCT显示出103至268微米的中央黄斑厚度(CMT)。 多数患者的眼底表现出黄斑色素的变化,其萎缩,消除或有限的周围视网膜色素变化;轻度的视盘苍白和最小的血管衰减。 在黄斑处的斑点低荧光是最常见的发现,视网膜周围的低自露倍率最小。通过cerkl基因突变看到的引起视网膜营养不良的北印度人口班萨尔*(1,2,3),debojyoti chakraborty(1)(1)(1)CSIR-基因组学和综合生物学研究所,德里,(2)景点研究,fortis Indiperies,fortis Indies Indive Isporties Indive Isporties Indive Indive Indive Indive Isporties Indive Indiperies,Instriped Isporties Indive Isporties Indive Isporties Indive Isporties Indive Isportion*临床特征,CERKL基因突变的基因型表型相关性,这是我们在印度北部的同类中看到的遗传性视网膜营养不良(IRD)患者的最常见基因突变之一。材料和方法:研究包括临床诊断患有IRD的患者。患者进行了超广阔的菲尔德(UWF)眼底照片,眼底自动荧光(FAF),光学相干断层扫描(OCT)。完成了谱系图表。遗传测试,分析了临床外显子组。结果:我们报告了35例选择接受遗传测序的35例CERKL基因突变患者的眼科和遗传发现(在我们的62名22名IRD患者中)。年龄从17至45岁(中位数25岁)不等。视觉范围从logmar 0.18到1.8。OCT显示出103至268微米的中央黄斑厚度(CMT)。多数患者的眼底表现出黄斑色素的变化,其萎缩,消除或有限的周围视网膜色素变化;轻度的视盘苍白和最小的血管衰减。在黄斑处的斑点低荧光是最常见的发现,视网膜周围的低自露倍率最小。所有患者的遗传测序均显示出相同的突变,在CERKL基因的外显子7(CHR2:G.181548785_181548786DEL)中是2个碱基对缺失。偶然,所有患有CERKL基因突变的患者均来自一个族裔群落,提示创始人突变效应。结论:CERKL基因结果中的突变是印度北部IRD的最常见原因之一。受影响的患者显示出明确的早期黄斑受累。这项研究报告了在印度北部一个大种族社区中Cerkl基因中的创始人突变效应的存在。关键词:创始人突变,CERKL基因突变,基因型表型相关,遗传性视网膜营养不良(IRD),色素性视网膜炎(RP)