1 Department of Material Science and Engineering, NTNU Norwegian University of Science and Technology, 7034, Trondheim, Norway 2 Christian Doppler Laboratory for Solid-State Batteries, NTNU Norwegian University of Science and Technology, 7034, Trondheim, Norway 3 Graz University of Technology, Institute of Chemistry and Technology of Materials, 8010, Graz, Austria 4 TU Wien, Institute of Chemical Technologies和Analytics,奥地利1060 WIEN 5电子显微镜和纳米分析研究所和Graz电子显微镜中心,格拉斯技术大学,8010,格拉兹,奥地利,奥地利6莱布尼兹·弗尼斯·伊斯蒂蒂特·克里斯塔尔祖顿(Leibniz-InstitutfürKristallzüchtung)德马德里,E-28049,西班牙,西班牙8浓缩物理中心(IFIMAC),马德里大学,马德里大学,E-28049 2629,JB代尔德,荷兰11物理学系,机械工程系,材料科学与工程,应用物理学计划,以及密歇根大学能源研究所,密歇根大学,安阿伯大学,48109,密歇根州立大学,美国密歇根州12个Walker机械工程系
Katharina Ehrmann 博士是维也纳技术大学增材制造团队的团队负责人,正在攻读特许资格。她致力于拓宽聚合物光基增材制造的加工窗口并重新思考其背后的化学原理,以获得具有功能性的高性能部件,最近她获得了 Elise Richter 奖学金,以研究多材料 3D 打印的新方法(4 年,500k)。她曾在因斯布鲁克大学(奥地利)和爱丁堡大学(英国)学习化学。在维也纳技术大学(奥地利)的 Robert Liska 教授团队攻读博士学位期间,Katharina 开发了用于组织工程应用的自增强热塑性聚氨酯。随后,她于 2021 年成为昆士兰科技大学 (QUT,澳大利亚) 的博士后研究员,在那里她在 Christopher Barner-Kowollik 教授的团队中研究波长分辨的光聚合物网络,自 2023 年回到维也纳技术大学以来,一直是昆士兰科技大学的访问研究员。她还是国际青年化学家网络 (IUPAC 附属组织) 的成员,目前担任该组织的财务主管,并获得过多个著名奖项和奖学金,如 Maria Schaumayer 博士论文奖、维也纳工程与医学中心论文奖、Christiana Hoerbiger 青年研究人员流动奖、CAS 未来领袖奖学金、FFG 女性创新者奖学金以及最近因多材料打印研究获得的 Fehrer 奖。
来自德国国家图书馆的书目信息德国国家图书馆将此出版物列入德国国家书目;详细的书目数据可在互联网上查阅,网址为:http://dnb.d-nb.de。版权所有 © 奥地利计算机协会 www.ocg.at 出版商:Facultas Verlags- und Buchhandels AG,1050 Vienna,奥地利 保留所有权利,特别是复制、分发和翻译的权利。 © 奥地利计算机协会 www.ocg.at 排版:奥地利计算机协会 印刷:Facultas Verlags- und Buchhandels AG 1050 Vienna, Stolberggasse 26 ISBN(facultas Verlag)978-3-7089-2274-4 ISBN(奥地利计算机协会)978-3 -903035-31-7
城市是动态中心,创新和变化具有即时影响。他们还面临着主要的挑战:气候危机,技术和人口变化,城市化和移民。,这是维也纳也必须克服的挑战。这座城市继续以许多智能城市排名的顶端为顶点,并提供了文化遗产,生活质量,世界主义和现代性的独特融合。作为一个聪明的城市,使维也纳与众不同的一件事是,它优先考虑住在这里的人的福祉。创新技术被部署在他们可以改善居民生活的地方。WIEN 2030年经济和创新战略旨在确保维也纳的吸引力作为一家企业和未来几年。Wien 2030与维也纳智能气候城市战略1和维也纳气候路线图2的目标密切相关,到2040年到达净零。重点是自2019年秋季以来众多领导项目中提出的六个顶级领域。这些主要主题之一是“ 21世纪城市生活的智能解决方案”。维也纳经济委员会建议城市管理人员,并确保涉及大型公司,初创企业,公司,大学和社会机构的前瞻性项目被采取行动,并有可能
1 维也纳技术大学微电子研究所 Christian Doppler 半导体器件和传感器多尺度过程建模实验室,Gußhausstraße 27-29/E360, 1040 Vienna, 奥地利;bobinac@iue.tuwien.ac.at (JB);reiter@iue.tuwien.ac.at (TR) 2 维也纳技术大学微电子研究所,Gußhausstraße 27-29/E360, 1040 Vienna, 奥地利;piso@iue.tuwien.ac.at (JP);klemenschits@iue.tuwien.ac.at (XK) 3 Global TCAD Solutions GmbH,Bösendorferstraße 1, Stiege 1, Top12, 1010 Vienna, 奥地利;o.baumgartner@globaltcad.com (OB); z.stanojevic@globaltcad.com (ZS);g.strof@globaltcad.com (GS);m.karner@globaltcad.com (MK) * 通信地址:filipovic@iue.tuwien.ac.at;电话:+43-1-58801-36036 † 本文是我们发表在 2022 年 9 月 21 日至 23 日在希腊科孚岛举行的第四届微电子器件和技术国际会议 (MicDAT) 论文集上的论文的扩展版本。
1数学和计算机科学系,南丹麦大学,ODENSE M DK-5230,丹麦2算法化学信息学集团,比勒菲尔德大学技术学院,Bielefeld D-33615,德国Bielefeld D-33615,德国3研究所3莱比锡大学生物信息学,德国莱比锡D-04107 5 Max Planck数学研究所在科学界,莱比锡D-04103,德国6 Fraunhofer细胞治疗研究所C DK-1870,丹麦8 Santa Fe Institute,1399 Hyde Park Rd,Santa Fe NM 87501,美国9研究网络化学符合维也纳大学微生物学,WIEN A-1090,奥地利 *通讯作者。电子邮件:banke@imada.sdu.dk电子邮件:banke@imada.sdu.dk
热转移:传热模式;一维热传导,抗性概念和电类比喻,通过鳍的传热;不稳定的热传导,集总参数系统,Heisler的图表;热边界层,自由和强制对流传热中的无量纲参数,扁平板上流动和通过管道的传热相关性,湍流的影响;热交换器性能,LMTD和NTU方法;辐射传热,Stefanboltzmann法律,WIEN的位移法,黑色和灰色表面,视图因素,辐射网络分析
Katharina Ehrmann应用合成化学研究所,Tu Wien主持人:Andrei Pimenov Termin:Mittwoch,26.03.2025,15:15 Uhr Ort:Tu Wien,freihausgebäudeWiednerHauptnerHauptstraße8-10,1040 Wien seminarraum dc corte bere dc corte <7(7)og)摘要:现代设备(例如医疗假体或信息存储设备)通常需要几种材料属性的复杂相互作用才能运行。这样的宏观和微观多部位零件的制造通常依赖于几种制造技术和相应的工程解决方案,以从几个单独制造的单特制零件中组装多用品构造。因此,一个树脂的真正多物质印刷最近已成为基于光的3D打印社区的焦点领域之一。具体而言,使用不同的辐射强度(灰度光刻)或不同颜色的光(多波长打印)的使用被证明是有力的打印参数,可以通过有目的地改变单体转换来改变交联密度,从而在一个树脂中使用僵硬和柔软的零件打印。然而,随着延迟的时间,这些转化率逐渐淡出的差异随着网络中剩余的未反应单体而发生。此外,材料特性的变化尚未扩展到刚性与软柔性之外。本演讲将探讨超出当前范围之外的灰度光刻的进步。在第二部分中,将引入基于单光量的增值税光聚合物中用于宏观对象的打印的新概念。在第一部分中,基于两光子聚合的灰度打印,用于制造具有前所未有的机械性能变异性以及在一个3D打印对象内具有前所未有的机械性能变异性以及可降解和不可降解部分的区分的µM尺寸对象。将证明结晶度在光聚合物中的高效诱捕将被证明,随后在多温度和灰度光刻中用于结晶度的变化,因此分别通过印刷温度或辐射强度的简单变化来变化。最后,将通过通过两种光线通过两种颜色的光线引入完全正交3D打印的第一个原理证明来讨论基于波长 - 正交反应的多波长3D打印的承诺,以创建可降解与不降解对象。
检查。论文是:•Max Planck 23。4。1858 Kiel•Arnold Sommerfeld 5.12。 1868Königsberg•Albert Einstein 14。 3。 1879 ULM•Ernest Rutherford 30。 8。 1871 Spring Grove•Max Burn 11 12. 1882 Breslau•James Franck 26。 8。 1882 Hamburg•Niels Bohr 7。 10。 1885哥本哈根•ErwinSchrödinger12。 8。 1887 VIENNA•WOLFGANG PAULI 25。 4。 1900维也纳•Werner Heisenberg 5.12。 1901Würzburg•Enrico Fermi 29。 9。 1901罗马•Paul Dirac 8。 8。 1902 Bristol•Pascual Jordan 18。 10。 1902 Hannover•Lew Landau 22。 1。 1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。 7。 1911佛罗里达•理查德·费曼(Richard Feynman)11。 5。 1918皇后区,纽约•朱利安·施温格12。 2。 1918纽约市1858 Kiel•Arnold Sommerfeld 5.12。1868Königsberg•Albert Einstein 14。 3。 1879 ULM•Ernest Rutherford 30。 8。 1871 Spring Grove•Max Burn 11 12. 1882 Breslau•James Franck 26。 8。 1882 Hamburg•Niels Bohr 7。 10。 1885哥本哈根•ErwinSchrödinger12。 8。 1887 VIENNA•WOLFGANG PAULI 25。 4。 1900维也纳•Werner Heisenberg 5.12。 1901Würzburg•Enrico Fermi 29。 9。 1901罗马•Paul Dirac 8。 8。 1902 Bristol•Pascual Jordan 18。 10。 1902 Hannover•Lew Landau 22。 1。 1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。 7。 1911佛罗里达•理查德·费曼(Richard Feynman)11。 5。 1918皇后区,纽约•朱利安·施温格12。 2。 1918纽约市1868Königsberg•Albert Einstein 14。3。1879 ULM•Ernest Rutherford 30。 8。 1871 Spring Grove•Max Burn 11 12. 1882 Breslau•James Franck 26。 8。 1882 Hamburg•Niels Bohr 7。 10。 1885哥本哈根•ErwinSchrödinger12。 8。 1887 VIENNA•WOLFGANG PAULI 25。 4。 1900维也纳•Werner Heisenberg 5.12。 1901Würzburg•Enrico Fermi 29。 9。 1901罗马•Paul Dirac 8。 8。 1902 Bristol•Pascual Jordan 18。 10。 1902 Hannover•Lew Landau 22。 1。 1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。 7。 1911佛罗里达•理查德·费曼(Richard Feynman)11。 5。 1918皇后区,纽约•朱利安·施温格12。 2。 1918纽约市1879 ULM•Ernest Rutherford 30。8。1871 Spring Grove•Max Burn 11 12.1882 Breslau•James Franck 26。8。1882 Hamburg•Niels Bohr 7。10。1885哥本哈根•ErwinSchrödinger12。8。1887 VIENNA•WOLFGANG PAULI 25。 4。 1900维也纳•Werner Heisenberg 5.12。 1901Würzburg•Enrico Fermi 29。 9。 1901罗马•Paul Dirac 8。 8。 1902 Bristol•Pascual Jordan 18。 10。 1902 Hannover•Lew Landau 22。 1。 1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。 7。 1911佛罗里达•理查德·费曼(Richard Feynman)11。 5。 1918皇后区,纽约•朱利安·施温格12。 2。 1918纽约市1887 VIENNA•WOLFGANG PAULI 25。4。1900维也纳•Werner Heisenberg 5.12。1901Würzburg•Enrico Fermi 29。 9。 1901罗马•Paul Dirac 8。 8。 1902 Bristol•Pascual Jordan 18。 10。 1902 Hannover•Lew Landau 22。 1。 1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。 7。 1911佛罗里达•理查德·费曼(Richard Feynman)11。 5。 1918皇后区,纽约•朱利安·施温格12。 2。 1918纽约市1901Würzburg•Enrico Fermi 29。9。1901罗马•Paul Dirac 8。8。1902 Bristol•Pascual Jordan 18。10。1902 Hannover•Lew Landau 22。1。1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。7。1911佛罗里达•理查德·费曼(Richard Feynman)11。5。1918皇后区,纽约•朱利安·施温格12。2。1918纽约市
2 Public Space, but also cosmopolitanism communicated in the slogan “Leben in Wien, Arbeiten in Europa,” Bitcoin ATMs, streets named after women, and reflected in a closing image of the ASCR video featuring a “Willkommen in der Seestadt” in a variety of languages including English, Turkish, French, Russian, Arabic, Portuguese, Spanish.Knierbein等。(2014)批评这是“文化有偏见的品牌”,以期吸引“富裕的服务经济城市居民”。从这个意义上讲,“空间情报”也对应于公共空间成为新的“后福特城市经济领土资本积累”的新领域的方式。