进入德国联邦国防军,作为宪兵部队军官候选人 接受训练成为一名宪兵排长/汉诺威第 720 军警营 在汉堡联邦国防军大学学习教育学 排长/行动官第三/汉诺威第 720 宪兵营队长 加拿大曼尼托巴省希洛宪兵指挥部连长 汉诺威第 720 宪兵营连长 演讲厅经理个人防护,二。位于 Stetten am Kalten Markt 42 的联邦国防军检查、宪兵学校和参谋服务。汉堡联邦国防军指挥学院陆军总参服务课程 G3 瓦尔德布勒尔联邦国防军参谋中心转型(2020 年武装部队部署/未来分析) 科布伦茨陆军司令部 G3 参谋人员(规划/部署/组织/原则)发言人 BMVg Fü H I 1 波恩 (原则) 第 251 野战警察营营长美因茨 2007 年 教务长元帅/Feldjägerführer DEU EinsKtgt ISAF/AFG 2009/2010 教务长元帅/Feldjägerführer DEU EinsKtgt ISAF/AFG 顾问 BMVg PSZ I 2,波恩(协调人事管理 B6 - B10) 顾问 BMVg PSZ II 2,波恩(协调人事管理 B3 - B10) 指挥官希尔登 Feldjäger 团 2 科隆联邦国防军人事管理办公室 III 1.2 部门负责人(人事管理 A13 - A16 总参谋部) 柏林 BMVg P I 3 部门负责人(中心任务/绩效流程人员/数字化)科隆联邦国防军人事管理办公室第三Z处处长和第三处副处长(中央任务/控制)德国联邦国防军宪兵司令部司令
目前,可测量的残留疾病(MRD)流式细胞仪测定法确定了治疗患者的残留白血病。具体而言,当患者的白血病细胞水平低于形态学方法的可检测到的限制时,就会发生MRD。以下研究是对新的急性髓样白血病(AML)MRD流式细胞仪面板的验证。研究了AML MRD分析的各个方面。它们包括由于加工,测量内精度,结转,检测限(LOD)以及与雅培Northwestern先前的旧BD FACSCANTO II流式细胞仪(BD Biosciences,加利福尼亚州BD Biosciences,加利福尼亚州BD Biosciences,加利福尼亚州BD Biosciences)在加利福尼亚州圣何塞的旧残留AML面板上一致的细胞损失。总体而言,由于处理引起的细胞损失取决于处理的白细胞总数(WBC),其中与包含较低总WBC的处理量相比,含有更高细胞损失的总WBC的处理量更高。的精度和结转,而LOD低于形态学方法。最后,抒情板和Canto面板之间的比较显示骨髓样品中的髓细胞频率可比。,尽管抒情板可以更好地在定性上准确检测残留疾病的存在。鉴于这些方面,新的歌词AML MRD流式细胞仪测定法比Canto残留AML面板更好地检测残留AML的存在。为了进一步改善新面板的MRD状态确定,建议进一步显示变化改善AML MRD检测。
(材料科学与工程系,康奈尔大学,纽约州纽约市,14850,美国)“通过分子在有机无机纳米材料界面上通过分子形成和功能”互动在基本结构形成过程中起着至关重要的作用,以及有机构造组合材料的功能和特性。本演讲将概述基于低摩尔质量表面活性剂的有机分子自动化现象以及大分子分子块共聚物的这种功能性纳米杂化物的化学和物理。这些现象用于构造各种定期多孔无机固体,包括绝缘体,半导体,金属和超导体。工作将涵盖在热力学平衡处或接近的结构形成,以及系统远离平衡的系统。实验将与理论预测进行比较,以提供对形成原理和特定特性的物理见解。所描述的工作的目的是了解基本的基本化学,热力学和动力学形成原理以及纳米结构 - 普罗托关系相关性,从而使结果能够在广泛的材料系统中对结果进行概括。将表明,随着针对原子结晶固体建立的概念被转化为介于镜的周期性crys-talline固体 - 从软物质自组装中衍生出的原子结晶固体,这些材料中的软凝结和硬凝结物理学之间的区别开始变得模糊。参考:1。2。SCI。 11,1261-1270(2018)。 3。SCI。11,1261-1270(2018)。 3。11,1261-1270(2018)。3。此类材料表现出从Otpics/纳米光子学到运输到量子现象的大量新物质,包括量子现象,包括经常性和受拓扑保护的量子状态。在可能的情况下,谈话将尝试将循环从高级材料的基本方面整理到应用到应用,从纳米医学到分离过程,再到储能和转换。K。Ma,Y。Gong,T。Aubert,M。Z。Turker,T。Kao,P。C。Doerschuk,U。Wiesner,由表面活性剂胶束导演的高度对称,超质无机笼子的自组装,自然558(2018),577-580。 J. G. Werner,G。G。G.Rodríguez-Calero,H。D。Abruña,U。Wiesner,块共聚物衍生的3-D连接多功能多功能多功能甲状腺纳米杂种,用于电气储存,能量环境。 y。 Sun,K。Ma,T。Kao,K。A. Spoth,H。Sai,D。Zhang,L。F. Kourkoutis,V。Elser,U。Wiesner,U。Wiesner,介孔二氧化硅纳米粒子的途径,带有DodeCagonal Tilling,Nat,Nat。 社区。 8(2017),252; doi:10.1038/s41467-017-00351-8。 4。 S. W. Robbins,P。A. Beaucage,H。Sai,K。W. Tan,J。P. Sethna,F。J. Disalvo,S。M. Gruner,R。B. Van Dover,U。Wiesner,U。Wiesner,Block共聚物自组装指导的介导性甲状腺高胶状超级con-SuperCon-puctors Science-Science-Science,e11015。 5。 K。W. Tan,B。Jung,J。G. Werner,E。R. Rhoades,M。O. Thompson,U。Wiesner,瞬态激光诱导的诱导的层次层次多孔结构,来自块共聚物自我组装,科学349,54-58(2015)。 6。 社区。 5,3247(2014)。 7。 transl。 Med。 8。K。Ma,Y。Gong,T。Aubert,M。Z。Turker,T。Kao,P。C。Doerschuk,U。Wiesner,由表面活性剂胶束导演的高度对称,超质无机笼子的自组装,自然558(2018),577-580。J. G. Werner,G。G。G.Rodríguez-Calero,H。D。Abruña,U。Wiesner,块共聚物衍生的3-D连接多功能多功能多功能甲状腺纳米杂种,用于电气储存,能量环境。y。Sun,K。Ma,T。Kao,K。A. Spoth,H。Sai,D。Zhang,L。F. Kourkoutis,V。Elser,U。Wiesner,U。Wiesner,介孔二氧化硅纳米粒子的途径,带有DodeCagonal Tilling,Nat,Nat。社区。8(2017),252; doi:10.1038/s41467-017-00351-8。4。S. W. Robbins,P。A. Beaucage,H。Sai,K。W. Tan,J。P. Sethna,F。J. Disalvo,S。M. Gruner,R。B. Van Dover,U。Wiesner,U。Wiesner,Block共聚物自组装指导的介导性甲状腺高胶状超级con-SuperCon-puctors Science-Science-Science,e11015。5。K。W. Tan,B。Jung,J。G. Werner,E。R. Rhoades,M。O. Thompson,U。Wiesner,瞬态激光诱导的诱导的层次层次多孔结构,来自块共聚物自我组装,科学349,54-58(2015)。6。社区。5,3247(2014)。 7。 transl。 Med。 8。5,3247(2014)。7。transl。Med。8。Z. Li,K。Hur,H。Sai,T。Higuchi,A。Takahara,H。Jinnai,S。M. Gruner,U。Wiesner,Wiesner,链接了三维网络二进制二进制金属纳米纳米粒子 - 特里布洛克terpolymer terpolymer superstruc- superstruc- sustruc- supstruc- supstruc- supstruc- nat,NAT,链接实验和理论。E. Phillips, O. Penate-Medina, P. B. Zanzonico, R. D. Carvajal, P. Mohan, Y. Ye, J. Humm, M. Gönen, H. Kaliagian, H. Schöder, H. W. Strauss, S. M. Larson, U. Wiesner, M. S. Bradbury, Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe,科学。6(2014),260RA149。 H。Sai,K。W. Tan,K。Hur,E。Asenath-Smith,R。Hovden,R。Hovden,Y。Jiang,M。Riccio,M。Riccio,D。A. Muller,D。A. Elser,V。Elser,L。A. Estroff,L。A. M. Gruner,S。M. Gruner,U。Wiesner,U。Wiesner,U。Wiesner,U。Wiesner,U。Wiesner,Hierarchical Porof to Block Copolymers copolymers,Science 341,530-533-53.34(530)。 9。 M. A. Noginov,G。Zhu,A。M。Belgrave,R。Bakker,V。M。Shalaev,E。E. E. E. Narimanov,S。Stout,E。Herz,E。Herz,T。Suteewong,T。Suteewong,U。Wiesner,U。Wiesner,Spaser基于Spaser的Nanolaser的演示,Nature 460(2009),1110-1112。6(2014),260RA149。H。Sai,K。W. Tan,K。Hur,E。Asenath-Smith,R。Hovden,R。Hovden,Y。Jiang,M。Riccio,M。Riccio,D。A. Muller,D。A. Elser,V。Elser,L。A. Estroff,L。A. M. Gruner,S。M. Gruner,U。Wiesner,U。Wiesner,U。Wiesner,U。Wiesner,U。Wiesner,Hierarchical Porof to Block Copolymers copolymers,Science 341,530-533-53.34(530)。9。M. A. Noginov,G。Zhu,A。M。Belgrave,R。Bakker,V。M。Shalaev,E。E. E. E. Narimanov,S。Stout,E。Herz,E。Herz,T。Suteewong,T。Suteewong,U。Wiesner,U。Wiesner,Spaser基于Spaser的Nanolaser的演示,Nature 460(2009),1110-1112。
Wiesner [Wie83]首先设想了将量子信息应用于不可原谅的货币,而这些早期的想法为量子加密术的领域奠定了基础。但是,维斯纳(Wiesner)的量子货币计划有一个主要的缺点:验证钞票是否有效,需要对国家的经典描述,因此必须将钞票发送回银行进行验证。使现金(纸质账单)有用的关键属性是,任何人都可以在本地验证钞票,而无需与银行进行通信,而钞票很难伪造。在古典世界中,数字货币不能希望实现这些属性,因为任何经典的布特特林都可以重复。在一个量子世界中,由于无关定理,我们希望获得不相关的钱。最近的作品[AAR09,FGH + 12,AC12,ZHA19]已寻求公开测试来验证钞票。具有这种测试的计划称为公共密钥量子货币(或PKQM)。不幸的是,令人信服的公共量子货币的建设是难以捉摸的。大多数建议是基于新的临时复杂性假设,在许多情况下,这些假设被打破[FGH + 12,PFP15,AAR16]。zhandry [zha19]表明,可以使用最近的无法区分性混淆器实例化[AC12]方案。但是,目前尚不清楚此类混淆器的量子安全性。Zhandry还在[ZHA19]中提出了一种新的量子货币计划,但他的计划的安全也受到质疑[ROB21]。
量子货币是一种实现数字货币的方式,其中代表货币的“钞票”是量子态。量子货币的想法最早由 Wiesner [ Wie83 ] 提出,自那时起,量子货币就吸引了量子计算研究界的关注。在本文中,我们重点研究可公开验证的量子货币 [ Aar09 ],这意味着任何观察者无需掌握特权信息即可验证钞票的正确性,以及量子闪电 [ Zha19 ],这可以保证铸币厂也无法通过铸造复本钞票作弊。不幸的是,构建可公开验证的量子货币已被证明是相当难以捉摸的。Farhi、Gosset、Hassidim、Lutomirski、Nagaj 和 Shor 表明,即使经过一些自然修改,Wiesner 的量子货币方案也不能用于直接构建可公开验证的方案 [ FGH + 10 ]。第一个真正可公开验证的量子货币候选者是由 Aaronson [ Aar09 ] 以及 Aaronson 和 Christiano [ AC12 ] 提出的,他们分别给出了相对于量子和经典预言机的可公开验证的量子货币构造。不幸的是,这两种构造中预言机的拟议实例后来都被破解了 [ LAF + 10 ] [ CPDDF + 19 ],这使得人们对此类预言机能否在现实世界中安全实施产生了怀疑。Zhandry 对量子闪电的具体构造 [ Zha19 ] 也被 Roberts [ Rob21 ] 破解。最近,Khesin、Lu 和 Shor [ KLS22 ] 的基于格的构造被 Liu、Montgomery 和 Zhandry [ LMZ23 ] 破解。另一方面,已经提出了一些候选方案,但尚未被破译,包括基于结点的构造 [ FGH + 12 ] 和四元数代数 [ Kan18 , KSS21 ]。此外,
1简介信息的安全传输需求至关重要取决于组织中偏执狂的水平。因此,有必要在政府组织内(尤其是国防或大型公司,尤其是在商业秘密方面)维护安全的信息传输。但是,我们如何安全地发送消息?密码学是古老的秘密写作艺术,一直是争夺和混乱的结合。明文(消息)的良好争夺是许多对称键加密方案的基础,例如高级加密标准(AES)。还有使用一对密钥,与创建者或发件人相关的公共密钥的不对称加密算法或公共密钥分配系统,用于加密Mes-sages和私钥,仅接收器(通常是发起者)才能解密该信息。这样的公共密钥方案是敌对的 - 萨米尔 - 阿德曼(RSA)协议,该协议基本上依赖于考虑两个大质数的困难。构思更早(至少在10年前),但最终于1983年发表,Wiesner概述了
欢迎介绍量子计算!在本课程中,我们将从理论计算机科学的角度探讨量子计算的主题。作为预示的亚伯拉罕·佩斯(Abraham Pais)的引用,我们的故事将涉及令人惊讶的曲折,这似乎与您对周围世界的看法完全不符。的确,在量子世界中,单个粒子可以同时在两个地方。两个粒子可以非常“绑定”,以至于即使相隔光年,它们也可以立即进行通信。 “看”量子系统的行为可以不可逆转地改变系统本身!正是这些量子力学的怪癖,我们旨在在计算研究中利用。量子计算的基本前提是“简单”:构建一台计算机,其位不是由晶体管代表的,而是由亚原子粒子(例如电子或光子)代表。在这个亚原子世界中,相关物理定律不再是牛顿的经典力学,而是量子力学定律。因此,名称为“量子计算”。为什么我们要构建这样的计算机?有很多原因。从工程的角度来看,微芯片组件变得如此小,以至于遇到量子效应,从而阻碍了其功能。对物理学家来说,量子计算的研究是一种自然的方法,用于模拟和研究自然界的量子系统。对于计算机科学家来说,量子计算机非常出色,因为它们可以解决在古典计算机上被认为是棘手的问题!量子计算领域可以说是从著名的物理学家理查德·芬曼(Richard Feynman)的想法(1982)开始,用于有效模拟物理系统(尽管应该指出的是,基于量子力学的冷冻术的想法可以追溯到1970年左右的斯蒂芬·维斯纳(Stephen Wiesner),这是现在,在1970年左右的史蒂芬·维斯纳(Stephen Wiesner)),无法在单一课程中捕捉到太大了。在这里,我们将重点关注广泛的介绍,旨在涵盖以下主题:什么是量子力学,以及如何利用构建计算机?这样的计算机可以解决什么样的计算问题?对于量子计算机来说,是否有困难的问题?最后,量子计算的研究告诉我们关于自然本身的什么?即使本课程是您最后一次遇到量子计算的话题,经验也应该希望您对物理和计算限制之间的良好相互作用,并增强线性代数的背景,这在许多其他计算机科学领域都有用。整个课程将在线性代数的数学框架中进行,我们现在审查。在进行课程之前,您要熟悉这些概念至关重要。这些笔记包含许多旨在帮助读者的练习;强烈建议您在阅读时对其进行处理。
Abd-El-Aziz、Antonietti、Christopher-Kowollik、Wolfgang H. Binder、Alexander Böker、Syrille Boyer、Michael R. Kakashi Ishizone、David L. Kaplan、Mario Leclerc、Lendlein、Bin Liu、Timothy E. Long、Sabine Ludwigs、Jean-François Lutz、Bernhard Rieger、Thomas P. Russell、Daniel A. Savin、A. The Schubert、Suchert、Severing、Severn、João BP BP Soares、Standing Mara、* Brent S. Sumerlin、Yanming Sun、Ben Zhong Tang、Chuanbing Tang、Patrick Theato、Tyrelli、Ophelia KC、Miriam M. Unterlass、Philipp Vana、Brigate、Sergey、Christoph Weder、Ulrich Wisdom 和 Wai-Yung Wong。
