这项研究的目的是研究EESM在电动汽车中的潜在应用。为了实现这一目标,本研究涵盖了一些主题。研究这些主题是为了面对挑战,然后EESM可能普遍存在,并最大程度地将EESM的优势用于电动汽车应用程序。在控制策略中,挑战是正确调整定子和场电流的组合,以便可以实现高功率因数和最小铜损耗。为了解决此问题,提出了控制策略,以便将反应性功耗和总铜损失最小化。使用拟议的策略,沿扭矩速度的信封最大化输出功率,并实现了高效率。在动态电流控制中,由于场绕组和定子绕组之间的磁耦合,一个绕组的电流上升会诱导另一个绕组力(EMF)。这引入了动态电流控制中的干扰。在这项研究中,提出了当前的控制算法来取消诱导的EMF,并减轻了干扰。在机器设计中,有望在相同的EESM设计中实现高启动扭矩和有效的场弱。要意识到这一点,需要满足一些标准。这些标准被得出并集成到设计过程中,包括多目标优化。A 48 V EESM是原型的。在实验验证中,达到10 N·M/L的扭矩密度,包括冷却夹克。基于估计,建立了闭环场电流控制。在现场激发中,采用了非接触式激发技术,从而导致野外绕组的难以接近。要实现封闭环中场电流的精确控制,提出了一种场电流的估计方法。在实验验证中,在2%的误差中跟踪了场电流参考。由于用于现场激发的其他转换器,EESM驱动器的成本增加了。提出了一种提取开关谐波以进行场激发的技术。使用此技术,定子和野外绕组都只能使用一个逆变器供电。
非高产物理学极大地丰富了我们对非平衡现象的理解,并发现了新的新作用,例如非炎性皮肤效应(NHSE),这些效应已深刻地彻底改变了该领域。nhse已在非偏置耦合的系统中进行了预测,但是在实验中实现了挑战。没有非互头耦合,NHSE也可以在具有仪表字段和损耗或增益的系统中出现(例如,在浮quet nonthermitian系统中)。但是,在实验中,这种Floquet NHSE在很大程度上尚未探索。在这里,我们意识到集成在硅光子平台上的定期调制的光学波导中的floquet nhses。通过设计由周期调制引起的人工量规场,我们观察到各种浮部NHSE阶段并揭示其丰富的拓扑转换。值得注意的是,我们发现了单极NHSE阶段与非常规双极NHSE相之间的过渡,并伴随着NHSES的方向逆转。在复杂的准认证空间中,带绕组揭示了底层物理,从而经历了从具有相同绕组的隔离环变为带有相反绕组的链接的环路的拓扑变化。我们的作品展开了一条新的途径,该路线源于量规场和耗散效应之间的相互作用,因此提供了从根本上进行转向光和其他波浪的新方法。
目录 章 页码 1. 介绍................................................................................................................ 1 2. 理论................................................................................................................... 6 2.1 直轴和交轴................................................................................................... 6 2.2 等效电路................................................................................................... 8 2.3 功率角特性................................................................................................... 9 3. 设计参数...................................................................................................... 11 3.1 气隙...................................................................................................... 11 3.2 磁通密度...................................................................................................... 12 3.3 定子和励磁绕组...................................................................................... 12 3.4 波形...................................................................................................... 13 3.5 电抗...................................................................................................... 13 3. 转子设计............................................................................................................. 15 4.1 机械...................................................................................................... 15 4.1.1 励磁绕组.
摘要:本文介绍了一种用于电网连接应用的三相多电平多输入功率转换器拓扑。它包含一个三相变压器,该变压器在初级侧以开端绕组配置运行。因此,初级绕组的一侧由三相 N 电平中性点钳位逆变器供电,另一侧由辅助两电平逆变器供电。所提方法的一个关键特点是 N 电平逆变器能够独立管理 N - 1 个输入电源,从而避免了在混合多源系统中需要额外的直流/直流功率转换器。此外,它还可以管理连接到两电平逆变器直流总线的储能系统。 N 级逆变器以低开关频率运行,可配备导通压降极低的绝缘栅双极晶体管 (IGBT) 器件,而辅助逆变器则根据传统的高频两级脉冲宽度调制 (PWM) 技术以低压运行,可配备导通电阻极低的金属氧化物半导体场效应晶体管 (MOSFET) 器件。模拟和实验结果证实了所提方法的有效性及其在电网电流谐波含量和整体效率方面的良好性能。
入门:安全地为两轮电池充电,任何骑两轮车的人都希望享受它。掌握蜿蜒的道路和发夹在山上弯曲,在古代意大利城镇发现隐藏的小巷,或在传奇的66号公路上体验纯粹的自由。是踏板车,赛车还是耐力赛 - 没人喜欢一台不启动的机器。使用C线电池充电器的常规充电支持可靠的开始,这使得骑自行车的人的心脏更快。
硅胶润滑剂价格:________橡胶和塑料的快速有效润滑剂。用于铰链,窗口通道,绕组机构,转向柱和塑料刷的所有圆形润滑以及消除仪表板吱吱声。白色油脂价格:________高级油脂润滑剂,含有固体润滑剂,可用于防护保护。防水配方润滑和保护。非滴水具有出色的粘附。非常适合用于连锁,链接,轴承,凸轮,跑步者和电缆的理想选择。也适用于电池端子保护器。地板
高阶拓扑能带理论扩展了物质拓扑相的分类,涵盖了绝缘体[1-13]、半金属[13-18]和超导体[19-31]。它推广了拓扑相的体边界对应性,使得d维n阶拓扑相仅在其(d-n)维边界上具有受保护的特性,例如无带隙态或分数电荷。目前,已知有两种互补机制可产生高阶拓扑相(HOTP):(1)由于某些 Wannier 中心配置引起的角诱导填充异常[2, 5, 9, 32, 33],以及(2)边界局域质量域的存在[2, 3, 6 – 8, 34, 35]。这两种机制分别导致了角电荷的分数量子化和角处单个间隙态的存在。在一阶拓扑系统中,还存在保护每个边界上的多个状态的相。这发生在奇数维度的手性对称系统(十重分类中的 AIII 类[36 – 38])中。例如,在一维系统中,此类相由一个 Z 拓扑变量(称为绕组数 [ 39 , 40 ])来识别,它将哈密顿量的同伦类归类在第一个同伦群 π 1 [ U ( N )] 内,并对应于每个边界上简并零能态的数量。相反,应用于手性一维系统的 Wannier 中心方法仅根据电偶极矩(由 Wannier 中心的位置给出)是否量化为 0 或 e/ 2 产生 Z 2 分类。因此,从这个意义上说,Wannier 中心方法的范围相对于绕组数的范围较小;它将所有具有偶数绕组数的一维手性对称系统标记为平凡的。观察到 AIII 类 1D 系统具有比 Wannier 中心图提供的更完整的 Z 分类,这表明,类似地,AIII 类 HOTP 可能存在更完整的分类。例如,考虑堆叠 N 个拓扑四极子绝缘体 [1]。如果它们以手性对称方式耦合,则整个系统在每个角将具有 N 个零能态。然而,没有已知的拓扑四极子绝缘体 [2]。
希灵登是伦敦第二大行政区,从北到南总长约 20 公里,部分地区为半乡村地区,道路可能没有路灯,蜿蜒曲折,崎岖不平,比伦敦市中心的行政区更窄。在这些行政区,骑自行车往返城镇中心通常会走更宽、路灯充足、更平坦的道路,而且距离更短。这些道路网络的复杂性和更高的拥堵程度往往
PTI Transformers LP,加拿大马尼托巴省温尼伯 ORCID:1. 0000-0002-1216-6513 doi:10.15199/48.2024.11.39 可再生能源收集器变压器摘要。太阳能发电站或风电场中的可再生能源集电变压器 (RCT) 将集电系统的电压转换为传输级电压。由于主要目标是提高电压,RCT 在此功能上与发电机升压 (GSU) 变压器相似,但有一些设计特点和操作特性使这些装置独一无二,例如典型的绕组配置星形-星形-埋置三角形,低压绕组通常通过中性点接地电抗器接地。设计必须考虑低压电流和电压中的谐波。抽象的。光伏站或风电场中的可再生能源站(RES站)的主变压器将来自主系统的电压转换为输电级电压。由于主要目的是提高电压,RCT 在这方面的功能与 GSU 变压器相似,但有一些设计特点和操作特性使这些装置独一无二,例如典型的三角形-星形绕组配置,低压绕组通常通过中性接地电感器接地。设计必须考虑低压电流和电压中谐波的存在。 (可再生能源发电站主变压器) 关键词:电力变压器、可再生能源发电站、过电压、谐波。可再生能源集电变压器 (RCT) 是一种专用电力变压器,它在太阳能发电站或风力发电场中,将电站集电系统的电压(通常为 34.5 kV)转换为传输电压水平,通常范围从 138 到 345 kV 或 500 kV。可再生能源站中 RCT 的位置如图 1 所示。虽然直接连接到逆变器的小功率变压器在论文和标准 [1, 2] 中有很好的描述,但集电变压器在已发表的参考文献或标准中并没有很好的描述。因此,本文的目标就是填补这一空白。图 1。集电变压器放置在集电母线和传输线之间;来自参考文献。 [1] 大多数可再生能源可能会出于不同的原因使用多个集电变压器,例如为了限制其物理尺寸(特别是为了运输或由于场地限制),或者利用电站设计理念的特点,例如分配负载或在故障期间在电站各部分之间转移负载,或紧急加载。由于 RCT 的主要目的是提高电压,因此该变压器的功能与发电机升压 (GSU) 变压器类似。然而,RCT 与 GSU 有许多区别,包括:(i)典型的绕组配置为星形-星形-埋地三角形,而 GSU 绕组采用星形-三角形连接,(ii)RCT 的低压绕组通常通过中性点接地电抗器 (NGR) 接地,而高压绕组
很明显,种植,将农作物缠绕在电线中,重新排列钩子,去衰减,选择性的年轻水果去除,有害生物和疾病控制,施肥和收获仍然是人类动力的工作。也很明显,正确执行这些事情需要重要的技能,因此从这种意义上讲,完全自主控制仍然很远。但是,如果可以将这种气候和浇水控制完全委派给自主系统,那么种植者会感到非常支持,因为它使他们有更多时间注意其余的管理任务。