抽象目标。由于缺乏睡眠或疲劳,睡眠的简短发作可能会侵入清醒的人脑中,以促进关键日常任务的安全性(即驾驶)。这些侵入还可以在功能磁共振成像(fMRI)实验中引入人肌活动,从而促使需要一种客观有效的去除它们的方法。方法。我们开发了一种方法,通过滚动窗口检测fMRI信号模板的入侵(ROWDI)来跟踪类似睡眠的事件。这些事件然后可以在fMRI数据的与事件相关的分析中使用。为了测试这种方法,我们生成了通过同时通过fMRI和脑电图(EEG)(n = 10)的过渡到睡眠的fMRI活性模板。rowdi在一晚睡眠剥夺后,在fMRI期间执行认知任务的20个人中的睡眠状事件。在独立的FMRI数据集中进一步验证了此方法(n = 56)。主要结果。我们的方法(Rowdi)能够在睡眠剥夺后执行的认知任务中推断出频繁的睡眠状事件。类似睡眠的事件平均与瞳孔大小减少20%和延长的响应时间有关。睡眠状事件期间的血氧基水平依赖性活性覆盖了丘脑皮层区域,虽然在空间上不同,但与任务相关的活性共存。这些关键发现在独立数据集中得到了验证。意义。rowdi可以可靠地检测到人脑中自发的睡眠状事件。因此,它也可以用作描述和说明与静止状态和与任务相关的fMRI研究中与唤醒性转变相关的神经活动的工具。
结果:在研究期间,有25名儿童被诊断出患有APW。13例男性(52%),患者的中位年龄为三个月(8天至7.5岁)。两名患者在首次入院时通过超声心动图被诊断为冠状动脉瘘,并在导管后被诊断为APW。APW,以解决大型心室间隔缺陷。根据STS分类,患者中有32%(n = 8)为III型,32%(n = 8)为I型,16%(n = 4)是中间类型,12%(n = 3)为II型,4%(n = 1)为APW,APW aPW伴有主动脉中断。相关的心血管畸形为76%(n = 19)。15例患者(60%)接受了手术。在四名患者(16%)中进行了APW的经导管闭合。在四名患者(16%)中进行了APW的经导管闭合。
摘要 — 脑电图 (EEG) 信号的准确二元分类是开发运动想象 (MI) 脑机接口 (BCI) 系统的一项艰巨任务。本研究提出了两种滑动窗口技术来增强运动想象 (MI) 的二元分类。第一种方法计算所有滑动窗口预测序列的最长连续重复 (LCR),称为 SW-LCR。第二种方法计算所有滑动窗口预测序列的模式,称为 SW-Mode。公共空间模式 (CSP) 用于提取特征,线性判别分析 (LDA) 用于对每个时间窗口进行分类。SW-LCR 和 SW-Mode 都应用于公开可用的 BCI 竞赛 IV-2a 健康个体数据集和中风患者数据集。与现有的最先进技术相比,SW-LCR 在健康个体的情况下表现更好,SW-Mode 在左手与右手 MI 的中风患者数据集上表现更好,标准差更低。对于这两个数据集,分类准确率 (CA) 约为 80%,kappa (κ) 为 0.6。结果表明,使用 SW-LCR 和 SW-Mode 的基于滑动窗口的 MI 预测对于试验内激活时间的试验间和会话间不一致具有很强的鲁棒性,因此可以在神经康复 BCI 环境中实现可靠的性能。
印度和世界都面临着“能源危机”。电力需求和供应之间存在巨大缺口。为了应对这种情况,人们正在考虑多种选择,重点是可再生能源的研究和开发。太阳能是众多可再生能源中闲置的解决方案。借助光伏系统,太阳能可用于满足电力需求。光伏系统的主要组成部分之一是光伏模块,也称为太阳能电池板,它有助于将从阳光中获得的能量转化为电能。过去,全球光伏系统的安装速度急剧加快,但同时也面临着土地稀缺和太阳辐照度等挑战。拟议的系统专注于增加安装的太阳能电池板数量,以便在不改变现有资源的情况下在建筑物内发电。除了从安装在屋顶上的电池板中获取太阳能外,还可以使用窗户来获取太阳能,从而消除空间稀缺。拟议的系统由嵌入在百叶窗上的太阳能电池板组成。该系统旨在全天自动跟踪太阳的位置。安装在百叶窗上的太阳能电池板的位置被调整到最佳角度以发电。然后将获得的能量存储在电池中,并进一步转换为交流电用于各种应用。关键词⸻可再生能源、太阳能、光伏模块、百叶窗 1. 引言 人类的不断繁荣不断增加对资源的需求。随着发展进程的加快,对能源的需求也随之增加。
DAP® DYNAFLEX ULTRA™ 高级密封胶适用于窗户、门、壁板和装饰应用,采用创新的 WeatherMax™ 技术配制而成,可抵抗紫外线褪色、变黄、粉化、碎裂、开裂和污垢堆积。它还具有终身防霉、防霉和防藻保修,因此密封胶看起来干净如新。DYNAFLEX ULTRA™ 对常见建筑材料具有很强的附着力,并且保持柔韧性,可形成持久的防风雨密封,提供全天候保护并抵御恶劣天气。它可在雨天使用,只需一小时即可上漆,以提高生产率。不会起泡。密封胶可轻松喷出,工具使用顺畅,易于涂抹。气味低,易于用水清理。可用于室外/室内。符合 ASTM C920、S 型、NS、25 级标准。
可视化人类大脑活动对于了解正常和异常的大脑功能至关重要。目前可用的神经活动记录方法具有高度侵入性、灵敏度低,并且不能在手术室外进行。功能性超声成像 (fUSI) 是一种新兴技术,可提供灵敏、大规模、高分辨率的神经成像;然而,fUSI 无法通过成年人头骨进行。在这里,我们使用聚合物头骨替代材料创建与 fUSI 兼容的声学窗口,以监测单个个体的成年人大脑活动。使用体外脑血管模型模拟脑血管系统和体内啮齿动物颅骨缺损模型,首先,我们通过不同厚度的聚甲基丙烯酸甲酯 (PMMA) 颅骨植入物或钛网植入物评估了 fUSI 信号强度和信噪比。我们发现,可以使用专用的 fUSI 脉冲序列通过 PMMA 植入物以高灵敏度记录大鼠大脑神经活动。然后,我们为一名在脑外伤后接受颅骨重建手术的成年患者设计了一种定制的超声透明颅窗植入物。我们表明,fUSI 可以在手术室外记录清醒人的大脑活动。在视频游戏“连点成线”任务中,我们展示了该个体任务调节皮质活动的映射和解码。在弹吉他任务中,我们绘制了其他特定于任务的皮质反应。我们的原理验证研究表明,fUSI 可用作高分辨率(200 μ m)功能成像方式,通过声学透明颅窗测量成年人的大脑活动。
方便而聪明:•窃窃私语,安静,无缝操作。•用tahoma开关的精确百分比盲人控制。•USB-C快速充电以获得优化的充电体验。•可用的磁充电配件(单独出售)。•与Tahoma Switch&Apple HomeKit兼容。•与Zigbee无线太阳能电池板兼容(可用的学期2,2024)。•与Tahoma Switch兼容其他Zigbee 3.0品牌。
大脑 - 现代科学的最后边界。尽管有许多技术进步,但我们仍然对大脑的工作原理知之甚少。幸运的是,一种称为功能磁共振成像(fMRI)的技术正在慢慢帮助改变这一点。fMRI可以在不打开头骨或暴露于有害辐射的情况下测量大脑活动。通过使用血液的磁性,fMRI可以检测与大脑活动相关的血流的变化,从而使科学家和医生能够告诉大脑的哪个区域比其他区域更活跃。目前,研究人员使用fMRI研究健康和疾病中大脑活动的各个方面。科学家继续推动fMRI技术的界限,并将其与其他技术相结合,以更好地了解大脑功能和功能障碍。
实习计划让实习生有机会获得实际工作经验,同时与职业领域的专业人士并肩工作。实习生在 GG-05 级别入职。实习生通常通过我们在 HireVue 上的实习/学生计划招聘活动获得聘用。请务必经常查看此网站和我们的 LinkedIn,以确保您不会错过申请机会!
用于深度渗透脑成像,尽管X射线计算机断层扫描和磁共振成像已被广泛使用,但由于空间分辨率相对较低,它们存在一些局限性。8,9出色的可靠性和生物相容性使聚集诱导的发射(AIE)点可用于荧光生物医学成像的出色候选物。10然而,激发或发射光的光子吸收和散射影响其穿透深度。由于吸收和散射的减少,基于第二个近红外(NIR-II)区域用于多光子荧光成像的AIE非常有希望地观察大深度大脑结构。空间取向是最重要的容器特征之一;它是诊断疾病,定位伤害和评估组织发育的指标。它也是定义纤维结构对齐的基础。11,12个先前的方法通常获得图像或感兴趣区域的平均方向,例如依赖傅立叶变换13、14或霍夫变换的技术。15 Bancelin等。16提出了一种形态的开放操作方法来实现视觉空间取向,但仅适用于相似的纤维直径。Quinn和Georgakoudi提出了一种加权定向矢量求和算法,该算法能够以2D图像的17和Liu等人获取像素方向。将此方法进一步扩展到3D表单。在这里,我们构建了一个用于大脑容器的大量成像和定向的自适应分析的系统。18的2D/3D加权矢量求和算法假定纤维结构的形态特征是相同的,并且在2D/3D图像中使用了所有光纤的固定窗口大小,最佳窗口尺寸为光纤直径的2至4倍。17,18因此,当应用于具有不同纤维厚度的复杂系统(例如脑桥梁)时,这些方法可能会降解定向确定的准确性。专门设计的AIE纳米颗粒(NP)用于获得大深度3D脑血管图像信息。最近,我们开发了一种纤维样结构内自动化的,素的厚度,并将其应用于脑血管疾病的分析。19基于厚度信息,在本研究中,我们提出了一种窗口优化(WO)方法,该方法能够显着提高2D和3D病例的空间或3D的确定精度。作为厚度确定和加权方向矢量求和算法的融合,WO方法根据纤维厚度信息可以自适应地以像素为基础优化计算参数。我们通过模拟的2D和3D光纤图像评估了该方法的表现。最后,我们通过建立从AIE辅助的体内三光子荧光(3PF)成像中获得的小鼠脑脑脑脑脑座管的大深度3D图像的方向结构来证明该系统的应用。