过渡到圣彼得堡大学音乐学院的钢琴研究。经过多年的学术挫败感,他加入了圣彼得堡大学的实验室。在那里他追求自然科学,并最终获得了化学和植物学的硕士学位。(1)虽然微生物学不是科学家的新概念,但他们对微生物的代谢多样性及其与地球的关系知之甚少。Winogradsky的突破之一是发现自养细菌。(2)通过他在斯特拉斯堡大学的安东·德巴里(Anton Debary)实验室的工作,他确定了一个非凡的微生物群体,能够利用无机化合物作为能源。Winogradsky见证了乞g和硫酸细胞中硫颗粒的外观和消失,他将这些生物称为“ Chemolithotrophs”。这些化学物质可以驱动元素能量周期,例如氮和硫。(1)这一开创性的发现挑战了所有生命仅依赖于光和有机化合物来维持生存的普遍观念。在1888年,Winogradsky在Debary实验室的努力即将结束,现在是时候开始他职业生涯的下一阶段了。氮在微生物生命周期中的作用。Winogradsky在苏黎世大学的卫生研究所,证实了英国化学家罗伯特·沃灵顿(Robert Warington)关于细菌对无机氨和亚硝酸盐氧化转化的理论。(1)Winogradsky鉴定了多个硝化细菌属,其中一些是硝化细菌,硝基杆菌,硝基瘤和硝基球菌。(3)当他于1899年回到圣彼得堡时,Winogradsky确定了强制性的Anaerobe梭子座巴氏菌,这证明某些生物可以修复大气氮。
单位 - I小时:12个微生物学的简介,历史和演变; Antonvan Leeuwenhoek,Joseph Lister,Pasteur,Koch,Jenner,Winogradsky,Winogradsky,Beijerinck的贡献;微生物对人类福利的影响。原核生物和真核细胞的结构。EUBACTERIA,考古细菌和真核生物之间的差异。
简介/背景:所有生物都需要特定的营养才能使它们的生存和生长。大多数这些营养物质正在连续地通过生物地球化学周期移动。这个循环通过地球的生物和非生存部分运输营养和化学物质。例如,空气中的氮可能是通过土壤中的细菌“固定”的,使植物可以使用,然后动物吃植物。细菌还会产生大量的氧气并分解废物。生物地球化学周期是一个封闭的系统,可连续重复使用,并在生态系统中回收营养。通过生态系统回收的重要营养素是氧,碳和硫。土壤中的微生物在回收这些和其他营养物质中起关键作用。Sergei Winogradsky通过使用长长的密封土壤柱(现在称为Winogradsky柱)来研究这些过程的方法。在Winogradsky列中,不同的梯度形式。这些梯度确定不同微生物可以在列中居住的地方。在Winogradsky列中,某些类型的微生物可能会耗尽其生长所需的特定资源。但是,这允许另一种具有不同需求的微生物使用可用资源。例如,某些类型的微生物可以生活在柱的底层中并耗尽氧气。但是,不需要氧气生存的微生物现在可以利用可用的资源。这种动态重复自我,允许列自我维持。通常,该柱在其各个层中总是具有不同量的氧气和硫,并且微生物将在最适合其需求的层中生长。通过改变水/土壤混合物的类型,温度和/或列中可用的资源,学生可以看到哪种类型的细菌生长最好。该实验还将使学生可以第一手在环境中回收营养。
生态系统是一个具有生命和非生存部分的系统。四个Winogradsky柱每个都有自己的生态系统。每列的营养素和/或光的可用性都不同,因此,每列中不同的微生物物种繁荣起来。随着时间的流逝,Winogradsky柱中应形成不同营养素的可用性逐渐变化。这些差异会影响不同微生物在色谱柱内生长的地方。例如,随着时间的流逝,空气旁边的圆柱顶部的氧气多于底部。这意味着可以耐受或产生氧气的微生物将位于顶部。微生物无法忍受游离氧(称为厌氧菌)将进一步下降。同样,需要光来制造能量的微生物(通过光合作用或类似的过程)需要生活在可以在列中获得光的地方。
第四学期项目工作 - 所有学生都将在监督下或老师的微生物学领域进行研究项目,并以论文的形式提交报告。学生将在他/她的工作中介绍D研讨会,该研讨会应由内部和外部审查员评估。论文写作:150演讲:150 Viva VOCE:100:400总数:2500第一学期MCR-511细菌学单位-I微生物学原理:范围和相关性,Antonie van Leewenhoek和微生物的发现; Francisco Reddi,Jonn Needham,Lazzaro Spallanzani,Schulz,Schroeder的自发生成实验理论;微生物在疾病微生物学范围和相关性的发酵和因果关系中的作用; Antonie van Leewenhoek以及Louis Pasteur,Robert Koch和Tyndall的发现或贡献或贡献;李斯特防腐手术;微生物和北京和Winogradsky的无机贡献的转变;微生物学20世纪和21世纪的发展。单位-II
1。Anton von Leeuwenhoek发现了显微镜和微生物世界;无菌技术参考Charak Samhita,Sushruta Samhita和Ignaz Philipp Semmelweis 2。微生物学的黄金时代 - 对生物发生的反驳;细菌疾病理论;发现疫苗接种;发现青霉素3。科学家的主要贡献:爱德华·詹纳,路易斯·巴斯德,罗伯特·科赫,约瑟夫·李斯特,伊万诺夫斯基,马丁纳斯·北京克林斯克和谢尔盖·温格拉德斯基单元 - 2:微生物在生命世界中的地位小时:10 1。海克尔的三个王国概念,惠特克的五个王国概念,卡尔·沃斯的三个领域概念2。微生物学的定义和范围;微生物学的应用;不同的微生物组3。地球时间表上微生物生命的起源,米勒的实验,内共生(蓝细菌),具有真核和原核细胞的特征
总学时:56 单元 1. 微生物学的简介、历史和范围 14 小时 1. 微生物和生命起源。 2. 微生物学的历史发展 - 自然发生和生物发生理论。 安东尼·冯·列文虎克、爱德华·詹纳、拉扎罗·斯帕兰扎尼、路易斯·巴斯德、约瑟夫·利斯特、罗伯特·科赫、亚历山大·弗莱明、贝耶林克、维诺格拉茨基和伊万诺夫斯基的贡献。 3. 印度科学家对微生物学领域的贡献。 4. 作为一门现代和相关健康科学的微生物学范围。 5. 微生物学的分支。 单元 2. 微生物学中使用的仪器和染色技术 14 小时 显微镜 1. 显微镜原理 - 分辨力、数值孔径、焦距和放大倍数 2. 显微摄影原理。 3. 工作原理和应用 a) 简单和复合显微镜 b) 暗场显微镜 c) 荧光显微镜 d) 电子显微镜 -TEM 和 SEM
在2024年1月21日收到的文章于201/02/2024修订的文章在2010年1月3日接受了文章,简介Azotobacterspecies是革兰氏阴性含量为革兰氏阴性含量,免费生活,有氧,非亲生氮固定细菌可增加土壤的生育能力。Lohnis和Smith(1923)描述了具有复杂生命周期的氮杂杆菌。纯培养中氮杂杆菌的形态差异很大。它是钝性的杆状或大约2x4µ的椭圆形细胞(Winogradsky,1930; 1938)。称为囊肿的静息细胞是球形,圆形和代谢性休眠的(Hitchins and Sadoff,1970; 1973)。已经报道了Azotobacter属的六种物种,其中一些是通过钙鞭毛蛋白鞭毛的运动,而其他鞭毛则是非运动的(Martyniuk and Martyniuk,2003年)。Azotobacter属在1901年被荷兰微生物学家,植物学家和环境微生物学 - 贝吉林克及其同事的创始人认可。关于作物生产中氮杂杆菌的研究表明,其在改善植物营养和改善土壤生育能力方面的重要性(Kurrey等,2018)。在补充了各种碳和氮来源的培养基中生长的几种氮杂杆菌菌株可以产生氨基酸(Gonzalez-Lopez等,2005)。这些根瘤菌产生的这种物质与几种
总小时:45个学分:3单元1微生物学的发展历史小时:10个微生物学作为学科,自发的生成与。生物发生。贡献的贡献,罗伯特·科赫,罗伯特·科赫,约瑟夫·李斯特,亚历山大·莱斯特,亚历山大·弗莱明罗在发酵中的微生物,疾病的生殖理论,发展各种微生物学技术和各种微生物学的黄金时代,微生物学的黄金时代,土壤学领域的发展,杂物:马里克氏菌杂志: Winogradsky,Selman A.Waksman通过Paul Ehrlich,Elie Metchnikoff,Edward Jenner Unit 2 Microbial World No. 的多样性,建立了医学微生物学和免疫学领域 小时:35 A. 分类二项式命名系统,惠特克的五个王国和卡尔·沃斯的三个王国分类系统及其效用。 原核生物和真核微生物之间的差异B. 不同群体的一般特征:细胞微生物(病毒,病毒,病毒,prions)和细胞微生物(细菌,藻类,真菌和原生动物),重点是分布,形态,繁殖方式,繁殖方式和经济重要性。 •藻类学史,重点是印度科学家的贡献;藻类的一般特征,包括发生,thallus组织,藻类细胞超结构,颜料,鞭毛,眼肉食品储量和营养,无性和有性繁殖。 藻类中的不同类型的生命周期合适的例子:单倍型,单跨,外交,外交和二链甲状腺素生命周期生命周期。贡献的贡献,罗伯特·科赫,罗伯特·科赫,约瑟夫·李斯特,亚历山大·莱斯特,亚历山大·弗莱明罗在发酵中的微生物,疾病的生殖理论,发展各种微生物学技术和各种微生物学的黄金时代,微生物学的黄金时代,土壤学领域的发展,杂物:马里克氏菌杂志: Winogradsky,Selman A.Waksman通过Paul Ehrlich,Elie Metchnikoff,Edward Jenner Unit 2 Microbial World No.小时:35 A.分类二项式命名系统,惠特克的五个王国和卡尔·沃斯的三个王国分类系统及其效用。原核生物和真核微生物之间的差异B.不同群体的一般特征:细胞微生物(病毒,病毒,病毒,prions)和细胞微生物(细菌,藻类,真菌和原生动物),重点是分布,形态,繁殖方式,繁殖方式和经济重要性。•藻类学史,重点是印度科学家的贡献;藻类的一般特征,包括发生,thallus组织,藻类细胞超结构,颜料,鞭毛,眼肉食品储量和营养,无性和有性繁殖。藻类中的不同类型的生命周期合适的例子:单倍型,单跨,外交,外交和二链甲状腺素生命周期生命周期。藻类在农业,工业,环境和食品中的应用•真菌学领域的真菌历史发展,包括著名神学家的重大贡献。真菌的一般特征,包括栖息地,分布,营养需求,真菌细胞超结构,thallus组织和聚集,真菌壁的结构和合成,无性繁殖,性生殖,异性疾病,异性恋,异性恋和副教育机制。真菌的经济重要性,其中包括农业,环境,工业,医学,食品,生物端内化和霉菌毒素的实例。•原生动物的一般特征特别参考了变形虫,帕拉斯菌,疟原虫,利什曼原虫和吉亚迪DS-1P:微生物学和微生物多样性概论(实践)学期 - I总小时 - 60个学分:2 1.微生物学良好的实验室实践和安全措施。
总小时:45个学分:3单元1微生物学的发展历史小时:10个微生物学作为学科,自发的生成与。生物发生。贡献的贡献,罗伯特·科赫,罗伯特·科赫,约瑟夫·李斯特,亚历山大·莱斯特,亚历山大·弗莱明罗在发酵中的微生物,疾病的生殖理论,发展各种微生物学技术和各种微生物学的黄金时代,微生物学的黄金时代,土壤学领域的发展,杂物:马里克氏菌杂志: Winogradsky,Selman A.Waksman通过Paul Ehrlich,Elie Metchnikoff,Edward Jenner Unit 2 Microbial World No. 的多样性,建立了医学微生物学和免疫学领域 小时:35 A. 分类二项式命名系统,惠特克的五个王国和卡尔·沃斯的三个王国分类系统及其效用。 原核生物和真核微生物之间的差异B. 不同群体的一般特征:细胞微生物(病毒,病毒,病毒,prions)和细胞微生物(细菌,藻类,真菌和原生动物),重点是分布,形态,繁殖方式,繁殖方式和经济重要性。 •藻类学史,重点是印度科学家的贡献;藻类的一般特征,包括发生,thallus组织,藻类细胞超结构,颜料,鞭毛,眼肉食品储量和营养,无性和有性繁殖。 藻类中的不同类型的生命周期合适的例子:单倍型,单跨,外交,外交和二链甲状腺素生命周期生命周期。 2。贡献的贡献,罗伯特·科赫,罗伯特·科赫,约瑟夫·李斯特,亚历山大·莱斯特,亚历山大·弗莱明罗在发酵中的微生物,疾病的生殖理论,发展各种微生物学技术和各种微生物学的黄金时代,微生物学的黄金时代,土壤学领域的发展,杂物:马里克氏菌杂志: Winogradsky,Selman A.Waksman通过Paul Ehrlich,Elie Metchnikoff,Edward Jenner Unit 2 Microbial World No.小时:35 A.分类二项式命名系统,惠特克的五个王国和卡尔·沃斯的三个王国分类系统及其效用。原核生物和真核微生物之间的差异B.不同群体的一般特征:细胞微生物(病毒,病毒,病毒,prions)和细胞微生物(细菌,藻类,真菌和原生动物),重点是分布,形态,繁殖方式,繁殖方式和经济重要性。•藻类学史,重点是印度科学家的贡献;藻类的一般特征,包括发生,thallus组织,藻类细胞超结构,颜料,鞭毛,眼肉食品储量和营养,无性和有性繁殖。藻类中的不同类型的生命周期合适的例子:单倍型,单跨,外交,外交和二链甲状腺素生命周期生命周期。2。藻类在农业,工业,环境和食品中的应用•真菌学领域的真菌历史发展,包括著名神学家的重大贡献。真菌的一般特征,包括栖息地,分布,营养需求,真菌细胞超结构,thallus组织和聚集,真菌壁的结构和合成,无性繁殖,性生殖,异性疾病,异性恋,异性恋和副教育机制。真菌的经济重要性,其中包括农业,环境,工业,医学,食品,生物端内化和霉菌毒素的实例。•原生动物的一般特征特别参考了变形虫,阿米氏菌,疟原虫,利什曼原虫和吉亚迪DS-1P:微生物学和微生物多样性简介(实践)总小时时间:60个学分:2 1.微生物学良好的实验室实践和生物安全。研究了主题生物学实验室中使用的重要仪器的原理和应用(层流,高压干,孵化器,BOD孵化器,热空气烤箱,光学显微镜,pH仪表)。