MAGNOLIA CC(已关闭) C:Chris Easterday | chris.easterday@seattle.gov AC:Andrew Nguyen | andrew.nguyen@seattle.gov MAGNUSON CC C:Kim LeMay | kim.lemay@seattle.gov AC:Penny Atwood | penny.atwood@seattle.gov MEADOWBROOK CC C:Douglas Oaksford | douglas.oaksford@seattle.gov AC:Heather Wyatt | heather.wyatt@seattle.gov MILLER CC C:Jacqueline Oaksford | jacqueline.oaksford@seattle.gov AC:Alicen Barney | alicen.barney@seattle.gov MONTLAKE CC(已关闭) C:Stefan Schmidt | stefan.schmidt@seattle.gov AC:Emily Whybra | emily.whybra@seattle.gov NORTHGATE CC C:Katie Fridell | katie.fridell@seattle.gov AC:Santy Villarico | santy.villarico@seattle.gov QUEEN ANNE CC C:Gina Saxby | gina.saxby@seattle.gov AC:Bethany Woolsey | bethany.woolsey@seattle.gov RAINIER CC C:Staci Doan | staci.doan@seattle.gov AC:乔治·安武 | staci.doan@seattle.gov george.yasutake@seattle.gov 雷尼尔海滩 CC C:玛莎·温瑟 (Martha Winther) | martha.winther@seattle.gov AC:Heather Nguyen | eater.nguyenhuynh@seattle.gov AC:Betty Aynete | betty.aynete@seattle.gov RAVENNA-ECKSTEIN CC C:卡梅伦·里维拉-弗洛丁 | betty.aynete@seattle.gov cameron.rivera-flodine@seattle.gov AC:Trixie Magsarili | trixie.magsarili@seattle.gov SOUTH PARK CC(已关闭) C:Zara Soares | zara.soares@seattle.gov VAN ASSELT CC C:达林·奥尔森 (Darin Olsen) | darin.olsen@seattle.gov AC:Sam Chesneau | samuel.chesneau@seattle.gov YESLER CC C:加里·亚历山大 | gary.alexander@seattle.gov AC:Faizah Osayande | faizah.osayande@seattle.gov
“我们很自豪地欢迎Rutgers癌症研究所获胜,” Win Consortium主席Wafik S. El-Deiry博士说,沃伦·阿尔珀特医学院(Warren Alpert Medical School),沃伦·阿尔珀特医学院(Warren Alpert Medical School),布朗大学(Brown Alpert Medical School),布朗大学(Brown Alpert Medical School),沃伦·阿尔珀特医学院(Warren Alpert Medical School),布朗大学(Rutgers Cancer Instute中心是新泽西州唯一的一个这个令人垂涎的名称使罗格斯癌症研究所成为美国罗格斯癌症研究所最佳癌症研究机构之一的区别,我们有着令人惊叹的同事,我们很高兴通过创新的下一代精确肿瘤学试验与之合作。” WIN是第一个联盟,该联盟将所有学术界,行业和患者倡导者共同努力,共同组成了全球范围内的癌症护理这也是第一个使用转录组学启动一项研究的组织,除基因组学以告知Winther研究中的治疗选择。“我们的兴奋感使我们在Wine Welcome Welcome Rutgers Cancer Institute,这是一家领先的癌症机构及其才华横溢的教师。
随着全球对抗击气候变化的关注度不断提高,越来越多的消费者开始转向绿色能源,这些能源通常通过能源属性证书 (EAC) 进行验证。这些证书向消费者保证,他们的能源消费由可再生能源支持。然而,目前占主导地位的机制仅以年度数量为基础匹配供需,这种机制因缺乏透明度(Brander 等人,2018 年;Hast 等人,2015 年;Mulder 和 Zomer,2016 年;Nordenstam 等人,2018 年;Winther 和 Ericson,2013 年)以及在刺激可再生能源基础设施投资方面的无效性而受到批评(Bird 等人,2002 年;Gillenwater 等人,2014 年;Hamburger,2019 年;Herbes 等人,2020 年;Markard 和 Truffer,2006 年)。最近的研究呼吁修订当前的环境索赔核算做法。 Bjørn 等人 (2022) 对由于广泛使用 EAC 而导致的减排努力的有效性被夸大表示担忧。同样,de Chalendar 和 Benson (2019) 主张企业碳核算以反映不同类型可再生能源的好处,这取决于当地电网在一天中某一时间的状况。徐等人 (2024) 建议,在地理和时间上将绿色电力生产与企业消费相一致,特别是通过按小时匹配,可以提高
摘要背景:肿瘤学中临床药物发展的当前模型显示,由于早期试验中患者入学率较高而导致的主要局限性,而在III期研究中,药物的衰竭率很高。目的:整合用于选择患者的转录组学具有增强对任何有针对性疗法或免疫疗法的精确肿瘤学试验的速度和功效的潜力。方法:使用Winther数据库的转移和正常器官匹配的组织中的相对基因表达水平用于估计硅中的各种转移性实体瘤中特定治疗的潜在临床益处。结果:例如,与C-MET的类似正常组织相比,肿瘤组织中的高mRNA表达及其配体HGF与硅中的配体与较短的总生存期相关(OS; P <0.0001),并且可能构成独立的预后标记物,以构成转移性固体肿瘤患者预后的独立预后标记,这表明患者可能会受益于受益于Met target-Target-target-target-target target target。在非小细胞肺癌和结直肠癌(CRC)中研究了几种免疫治疗靶标基因表达(PD-L1,CTLA4,TIM3,TIGIT,LAG3,TLR4)的预后价值CRC。结论:预计这在计算机方法中有望大大减少患者入学率的流失,并同时增加疗效早期迹象的速度和检测。该模型可能会显着导致较低的毒性。总的来说,我们的模型旨在克服当前方法的局限性。
摘要背景:目前的肿瘤临床药物开发模式存在很大的局限性,因为早期试验中患者入组率高,III 期研究中药物失败率高。目的:整合转录组学来选择患者有可能提高任何靶向治疗或免疫治疗的精准肿瘤学试验的速度和疗效。方法:使用 WINTHER 数据库中转移和正常器官匹配组织中的相对基因表达水平来计算机模拟估计特定治疗对各种转移性实体瘤的潜在临床益处。结果:例如,与类似的正常组织相比,肿瘤组织中 c-MET 及其配体 HGF 的高 mRNA 表达与较短的总生存期 (OS;p < 0.0001) 相关,并且可能构成转移性实体瘤患者预后的独立预后标志物,这表明可以确定最有可能从 MET 靶向治疗中受益的患者。在非小细胞肺癌和结直肠癌 (CRC) 中研究了几种免疫治疗靶点 (PD-L1、CTLA4、TIM3、TIGIT、LAG3、TLR4) 基因表达的预后价值,这可能有助于优化其抑制剂的开发,并开辟新途径,例如使用抗 TLR4 治疗转移性 CRC 患者。结论:这种计算机模拟方法有望大幅减少患者入组率,同时提高疗效的速度和早期迹象的检测率。该模型可能显著有助于降低毒性。总之,我们的模型旨在克服当前方法的局限性。
Thorsten Langer A,1,Eva Clement B,1,Broer Linda D,1,Lara,Andrease G. Uiterlinden D,Andrica C.H.vries B,C,Martine是萨斯基亚F.M. Grotel B。 Pluijm B,Harald Binder F,G,G,G,Annika和Annika,Marco Crosco K,线教练,Jeanette F. Winter L,M,Catherine Rechnitzer,Henrik Hasle,斯蒂芬·诺丁(Stephen-Noting),克劳迪娅(Claudia E. Kuehni E. 财团vries B,C,Martine是萨斯基亚F.M. Grotel B。Pluijm B,Harald Binder F,G,G,G,Annika和Annika,Marco Crosco K,线教练,Jeanette F. Winter L,M,Catherine Rechnitzer,Henrik Hasle,斯蒂芬·诺丁(Stephen-Noting),克劳迪娅(Claudia E. Kuehni E.财团
摘要背景:癌症中失调的通路可能对枢纽依赖。识别这些失调的网络并加以靶向可能会带来新的治疗选择。目标:考虑到中心枢纽与致死率增加相关的假设,识别中心网络中的关键枢纽靶标可能有助于开发出对晚期转移性实体瘤疗效更高的新型药物。设计:探索 WINTHER 试验(N = 101 名患有各种转移性癌症的患者)的转录组数据(22,000 种基因产物),其中肿瘤和正常器官匹配的组织均可用。方法:对转录组中的所有基因进行回顾性计算机模拟分析,以识别肿瘤和正常组织之间表达不同的基因(配对 t 检验),并使用生存分析(Cox 比例风险回归算法)确定它们与生存结果的关联。根据已识别基因的生物学相关性,然后确定中心网络内感兴趣的枢纽靶标。根据这些基因的表达水平对患者进行分组( K 均值聚类),并检查这些组与生存期的关联(Cox 比例风险回归算法、森林图和 Kaplan-Meier 图)。结果:我们确定了四个关键的中心枢纽基因 - PLOD3、ARHGAP11A、RNF216 和 CDCA8,与类似的正常组织相比,它们在肿瘤组织中的高表达与较差的结果具有最显著的相关性。这种相关性与肿瘤或治疗类型无关。这四种基因的组合显示出最高的显著性和与较差结果的相关性:总体生存率(风险比(95% 置信区间 (CI))= 10.5(3.43–31.9)p = 9.12E-07 在 Cox 比例风险回归模型中的对数秩检验)。在独立队列中验证了结果。结论:PLOD3、ARHGAP11A、RNF216 和 CDCA8 的表达结合起来可构成一种预后工具,与肿瘤类型和既往治疗无关。这些基因是拦截各种癌症中枢网络的潜在靶点,为新型治疗干预提供了途径。
•衍生E,Sousa C,Gautier JJ,Lombard B,Loew D,Gautreau A.ARP2/ 3活化剂洗涤器通过大型多蛋白结合体控制内体的裂变。DEV单元格。2009年11月; 17(5):712-23。 doi:10.1016/j.devcel.2009。 09.010。 引用PubMed(https://www.ncbi.nlm.nih.gov/pubmed/19922875)•djinovic-carugo K,Gautel M,Ylanne J,Ylanne J,Young P.光谱蛋白重复:cytoskeletallion:cytoskemeptrin percontrial:cytoskemelet for Cytoskeletartic Flatform cytoskeletal蛋白蛋白质组件。 febs lett。 2002 Feb20; 513(1):119-23。 doi:10.1016/s0014-5793(01)03304-x。 引用于PubMed(https://www.ncbi.nlm.nih。 Gov/PubMed/11911890)•Elliott AM,Chudley A. Ritscher-Schinzel综合征。 2020年1月23日。 in:Adam MP,Feldman J,Mirzaa GM,Pagon RA,Wallace SE,Amemiya A,Editors.genereviews(R)[Internet]。 西雅图(WA):西雅图华盛顿大学; 1993-2025。 可从http://www.ncbi.nlm.nih.gov/books/nbk553049/ PubMed引用(https:///ww w.ncbi.nlm.nih.gov/ww w.ncbi.nlm.nih.gov/31971710)神经元的表征以及疾病突变的效果,洗涤复合物组装和功能。 Biochim Biophys Acta。 2013jan; 1832(1):160-73。 doi:10.1016/j.bbadis.2012.10.011。 Epub 2012年10月23日。 引用于PubMed(https://www.ncbi.nlm.nih.gov/pubmed/23085491)•Hedera P,Rainier S,Alvarado D,Zhao X,Zhao X,Williamson J,Williamson J,Otterud B,Otterud B,Otterud B,Leppert M,Leppert M,Fink JK。 常染色体显性遗传痉挛性截瘫的新型基因座,Onchromosoms 8q。 Am J Hum Genet。 1999年2月; 64(2):563-9。 doi:10.1086/302258。 脑道路道。2009年11月; 17(5):712-23。 doi:10.1016/j.devcel.2009。09.010。引用PubMed(https://www.ncbi.nlm.nih.gov/pubmed/19922875)•djinovic-carugo K,Gautel M,Ylanne J,Ylanne J,Young P.光谱蛋白重复:cytoskeletallion:cytoskemeptrin percontrial:cytoskemelet for Cytoskeletartic Flatform cytoskeletal蛋白蛋白质组件。febs lett。2002 Feb20; 513(1):119-23。 doi:10.1016/s0014-5793(01)03304-x。 引用于PubMed(https://www.ncbi.nlm.nih。 Gov/PubMed/11911890)•Elliott AM,Chudley A. Ritscher-Schinzel综合征。 2020年1月23日。 in:Adam MP,Feldman J,Mirzaa GM,Pagon RA,Wallace SE,Amemiya A,Editors.genereviews(R)[Internet]。 西雅图(WA):西雅图华盛顿大学; 1993-2025。 可从http://www.ncbi.nlm.nih.gov/books/nbk553049/ PubMed引用(https:///ww w.ncbi.nlm.nih.gov/ww w.ncbi.nlm.nih.gov/31971710)神经元的表征以及疾病突变的效果,洗涤复合物组装和功能。 Biochim Biophys Acta。 2013jan; 1832(1):160-73。 doi:10.1016/j.bbadis.2012.10.011。 Epub 2012年10月23日。 引用于PubMed(https://www.ncbi.nlm.nih.gov/pubmed/23085491)•Hedera P,Rainier S,Alvarado D,Zhao X,Zhao X,Williamson J,Williamson J,Otterud B,Otterud B,Otterud B,Leppert M,Leppert M,Fink JK。 常染色体显性遗传痉挛性截瘫的新型基因座,Onchromosoms 8q。 Am J Hum Genet。 1999年2月; 64(2):563-9。 doi:10.1086/302258。 脑道路道。2002 Feb20; 513(1):119-23。 doi:10.1016/s0014-5793(01)03304-x。引用于PubMed(https://www.ncbi.nlm.nih。Gov/PubMed/11911890)•Elliott AM,Chudley A. Ritscher-Schinzel综合征。2020年1月23日。in:Adam MP,Feldman J,Mirzaa GM,Pagon RA,Wallace SE,Amemiya A,Editors.genereviews(R)[Internet]。西雅图(WA):西雅图华盛顿大学; 1993-2025。 可从http://www.ncbi.nlm.nih.gov/books/nbk553049/ PubMed引用(https:///ww w.ncbi.nlm.nih.gov/ww w.ncbi.nlm.nih.gov/31971710)神经元的表征以及疾病突变的效果,洗涤复合物组装和功能。 Biochim Biophys Acta。 2013jan; 1832(1):160-73。 doi:10.1016/j.bbadis.2012.10.011。 Epub 2012年10月23日。 引用于PubMed(https://www.ncbi.nlm.nih.gov/pubmed/23085491)•Hedera P,Rainier S,Alvarado D,Zhao X,Zhao X,Williamson J,Williamson J,Otterud B,Otterud B,Otterud B,Leppert M,Leppert M,Fink JK。 常染色体显性遗传痉挛性截瘫的新型基因座,Onchromosoms 8q。 Am J Hum Genet。 1999年2月; 64(2):563-9。 doi:10.1086/302258。 脑道路道。西雅图(WA):西雅图华盛顿大学; 1993-2025。可从http://www.ncbi.nlm.nih.gov/books/nbk553049/ PubMed引用(https:///ww w.ncbi.nlm.nih.gov/ww w.ncbi.nlm.nih.gov/31971710)神经元的表征以及疾病突变的效果,洗涤复合物组装和功能。Biochim Biophys Acta。2013jan; 1832(1):160-73。 doi:10.1016/j.bbadis.2012.10.011。Epub 2012年10月23日。引用于PubMed(https://www.ncbi.nlm.nih.gov/pubmed/23085491)•Hedera P,Rainier S,Alvarado D,Zhao X,Zhao X,Williamson J,Williamson J,Otterud B,Otterud B,Otterud B,Leppert M,Leppert M,Fink JK。常染色体显性遗传痉挛性截瘫的新型基因座,Onchromosoms 8q。Am J Hum Genet。1999年2月; 64(2):563-9。 doi:10.1086/302258。脑道路道。Citation on PubMed (https://pubmed.ncbi.nlm.nih.gov/9973294) or Free article on PubMed Central (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1377766/) • Meijer IA, Valdmanis PN, Rouleau GA.痉挛性截瘫8。2008年8月13日[2020年5月21日更新]。in:Adam MP,Feldman J,Mirzaa GM,Pagon RA,Wallace SE,Amemiya A,编辑。genereviews(r)[Internet]。西雅图(WA):西雅图华盛顿大学; 1993-2025。 Available fromhttp://www.ncbi.nlm.nih.gov/books/ NBK1827/ Citation on PubMed (https://pubmed.ncbi.nlm.nih.gov/20301727) • Pehrson C, Hertz JM, Wirenfeldt M, Stenager E, Wermuth L, Winther KristensenB. 遗传性痉挛性截瘫8:神经病理学发现。 2018年3月; 28(2):292-294。 doi:10.1111/bpa.12494。 没有抽象可用。 Citation on PubMed (https://www.ncbi.nlm.nih.gov/pubmed/28181327) • Rocco P, Vainzof M, Froehner SC, Peters MF, Marie SK, Passos-Bueno MR, Zatz M.Brazilian family with pure autosomal dominant spastic paraplegia maps to 8q: analysis of muscle beta 1个综合素。 Am J Med Genet。 2000年5月15日; 92(2):122-7。 doi:10.1002/(SICI)1096-8628(20000515)92:23.0.co; 2-b。 引用于PubMed(https://pubmed.ncbi.nlm.nih.gov/10797436)•Valdmanis PN,Meijer IA,Reynolds A,Lei A,Lei A,MacLeod P,Schlesinger P,Schlesinger D,Schlesinger D,Zatz M,Zatz M,Zatz M,Reid e,Dion Pa,Dion Pa,Dion Pa,Dion Pa,Drapeau p,Drapeau p,Rouleau p,Rouleau p,Rouleau p,Rouleau p,Rouleau p,Rouleau p,Rouleau p,Rouleau p,Rouleau p,Rouleau p,Rouleau p,Rouleau。 Thespg8基因座的KIAA0196基因的突变引起遗传痉挛性截瘫。 Am J Hum Genet。 2007jan; 80(西雅图(WA):西雅图华盛顿大学; 1993-2025。Available fromhttp://www.ncbi.nlm.nih.gov/books/ NBK1827/ Citation on PubMed (https://pubmed.ncbi.nlm.nih.gov/20301727) • Pehrson C, Hertz JM, Wirenfeldt M, Stenager E, Wermuth L, Winther KristensenB.遗传性痉挛性截瘫8:神经病理学发现。2018年3月; 28(2):292-294。 doi:10.1111/bpa.12494。没有抽象可用。Citation on PubMed (https://www.ncbi.nlm.nih.gov/pubmed/28181327) • Rocco P, Vainzof M, Froehner SC, Peters MF, Marie SK, Passos-Bueno MR, Zatz M.Brazilian family with pure autosomal dominant spastic paraplegia maps to 8q: analysis of muscle beta 1个综合素。Am J Med Genet。2000年5月15日; 92(2):122-7。 doi:10.1002/(SICI)1096-8628(20000515)92:23.0.co; 2-b。 引用于PubMed(https://pubmed.ncbi.nlm.nih.gov/10797436)•Valdmanis PN,Meijer IA,Reynolds A,Lei A,Lei A,MacLeod P,Schlesinger P,Schlesinger D,Schlesinger D,Zatz M,Zatz M,Zatz M,Reid e,Dion Pa,Dion Pa,Dion Pa,Dion Pa,Drapeau p,Drapeau p,Rouleau p,Rouleau p,Rouleau p,Rouleau p,Rouleau p,Rouleau p,Rouleau p,Rouleau p,Rouleau p,Rouleau p,Rouleau p,Rouleau。 Thespg8基因座的KIAA0196基因的突变引起遗传痉挛性截瘫。 Am J Hum Genet。 2007jan; 80(2000年5月15日; 92(2):122-7。 doi:10.1002/(SICI)1096-8628(20000515)92:23.0.co; 2-b。引用于PubMed(https://pubmed.ncbi.nlm.nih.gov/10797436)•Valdmanis PN,Meijer IA,Reynolds A,Lei A,Lei A,MacLeod P,Schlesinger P,Schlesinger D,Schlesinger D,Zatz M,Zatz M,Zatz M,Reid e,Dion Pa,Dion Pa,Dion Pa,Dion Pa,Drapeau p,Drapeau p,Rouleau p,Rouleau p,Rouleau p,Rouleau p,Rouleau p,Rouleau p,Rouleau p,Rouleau p,Rouleau p,Rouleau p,Rouleau p,Rouleau。 Thespg8基因座的KIAA0196基因的突变引起遗传痉挛性截瘫。Am J Hum Genet。2007jan; 80(