[2] S. M. Thompson,L。Bian,N。Shamsaei和A. Yadollahi,“添加剂制造的直接激光沉积概述;第一部分:运输现象,建模和诊断,” Addive Manufacturing,第1卷。8,pp。36-62,2015年10月。[3] V. T. Le,H。Paris和G. Mandil,“使用增材和减法制造技术的直接零件再利用策略的制定”,《增材制造》,第1卷。22,pp。687-699,2018年8月。[4] V. T. Le,H。Paris和G. Mandil,“在再制造环境中合并添加剂和减法制造技术的过程计划”,《制造系统杂志》,第1卷。44,否。1,pp。243-254,2017年7月。[5] A. Ramalho,T。G. Santos,B。Bevans,Z。Smoqi,P。Rao和J. P. Oliveira,“污染对316L不锈钢线和ARC添加性生产过程中声学发射的影响”,Addived Manufacturing,第1卷。51,第1条。102585,2022年3月。[6] S. Li,J。Y. Li,Z。W. Jiang,Y。Cheng,Y。Z. Li,S。Tang等人,“控制Inconel 625的定向能量沉积期间的柱状到等式的过渡”,Addy Manufacturing,第1卷。57,第1条。102958,2022年9月。[7] T. A. Rodrigues,N。Bairrão,F。W。C. Farias,A。Shamsolhodaei,J。Shen,J。Shen,N。Zhou等人,“由Twin-Wire和Arc添加剂制造(T-WAAM)生产的钢 - Copper功能渐变的材料(T-WAAM)”,材料&Designs,第1卷。213,第1条。110270,2022年1月。66,否。8,pp。1565-1580,2022年8月。32,否。[8] V. T. Le,D。S. Mai,M。C. Bui,K。Wasmer,V。A. Nguyen,D。M. Dinh等,“过程参数和热周期的影响,对308L不锈钢墙的质量,该材料由添加剂生产产生的308L不锈钢墙,使用弧形焊接来源,使用弧形焊接源,焊接,焊接,焊接,”。[9] D. Jafari,T。H。J. Vaneker和I. Gibson,“电线和电弧添加剂制造:控制制造零件的质量和准确性的机遇和挑战”,《材料与设计》,第1卷。202,第1条。109471,2021年4月。[10] S. W. Williams,F。Martina,A。C. Addison,J。Ding,G。Pardal和P. Colegrove,“ Wire + Arc添加剂制造”,《材料科学与技术》,第1卷。7,pp。641-647,2016。[11] W. E. Frazier,“金属添加剂制造:评论”,《材料工程与性能杂志》,第1卷。23,否。6,pp。1917-1928,2014年6月。[12] J. Xiong,Y。Li,R。Li和Z. Yin,“过程参数对基于GMAW的添加剂制造中多层单频薄壁零件的表面粗糙度的影响”,《材料加工技术杂志》,第1卷。252,pp。128-136,2018年2月。[13] V. T. Le,“基于气体弧焊接的金属零件添加剂制造的初步研究”,VNUHCM科学技术杂志,第1卷。23,否。1,pp。422-429,2020年2月。58,否。4,pp。461-472,2020年7月。[15] W. Jin,C。Zhang,S。Jin,Y。Tian,D。Wellmann和W. Liu,“不锈钢的电弧添加剂制造:审查”,《应用科学》,第1卷。[14] V. T. Le,Q。H。Hoang,V。C. Tran,D。S. Mai,D。M. Dinh和T. K. Doan,“焊接电流对由薄壁低碳构建的形状和微观结构形成的影响,由电线添加剂制造建造的薄壁低碳零件”,《越南科学和技术杂志》,第1卷。10,否。5,第1条。1563,2020年3月。[16] T. A. Rodrigues,V。Duarte,J。A. Avila,T。G。Santos,R。M。Miranda和J. P. Oliveira,“ HSLA钢的电线和弧添加剂制造:热循环对微结构和机械性能的影响”,《增材制造》,第1卷。27,pp。440-450,2019年5月。[17] J. G. Lopes,C。M。Machado,V。R。Duarte,T。A。Rodrigues,T。G。Santos和J. P. Oliveira,“铣削参数对电线和弧添加剂生产产生的HSLA钢零件的影响(WAAM)”,《制造工艺杂志》,第1卷。59,pp。739-749,2020年11月。[18] A. V. Nemani,M。Ghaffari和A. Nasiri,“通过传统滚动与电线弧添加剂制造制造的船建造钢板的微观结构特性和机械性能的比较,”添加剂制造业,第1卷。32,第1条。101086,2020年3月。[19] P. Dirisu,S。Ganguly,A。Mehmanparast,F。Martina和S. Williams,“对线 +电线 + ARC添加剂生产的高强度高强度低合金结构钢组件的裂缝韧性分析”,材料科学与工程:A,第1卷,第1卷。765,第1条。138285,2019年9月。787,第1条。139514,2020年6月。[20] L. Sun,F。Jiang,R。Huang,D。Yuan,C。Guo和J. Wang,“各向异性机械性能和低碳高强度钢分量由Wired and Arc添加剂制造制造的低强度钢组件的变形行为”,材料科学和工程学:A,A,第1卷。[21] https://doi.org/10.1007/s11665-022-06784-7
无线驱动和远程控制的活跃软材料已引起了大量的研究注意,因为与传统的智能材料相比,它们在各种各样的领域中具有潜在的潜在应用,其性能有所改善。[1-5]这些合成伴侣对环境刺激的反应并表现出模仿或与自然界观察到的行为或现象相匹配的能力。[6-8]在这些智能材料中,机械刺激响应材料从环境输入中收获能量,例如光线,[9-11]热量,[12,13]溶剂,[14,15]和物理领域和[16-18],并将其转换为机械能量,无需通过机械形状,无需通过板上的功率来源。这些无线材料可以完成各种功能,例如运动[19-21]以及物体操纵和运输[22-24]作为执行器和传感器。在迄今为止报道的大量活跃智能材料中,由于它们的独特特征和独特的优点,液晶弹性体(LCE)和磁反应弹性体(MRE)最近与其他人脱颖而出。lces表现出大量的菌株(高达400%)和高度工作,以响应多种环境刺激,例如温度[25-27]光,[11,28]和电场。[17,18,29] LCES内部元素的预定对齐(由导演n描述)启用了已在软执行器和生物启发的设备中使用的复杂的3D可逆形状。这些局部菌株共同起作用,以实现指定的形状 - 修复行为,这通常是平面外弯曲的。[6,11,30]外部刺激会根据LCES的当地董事场诱导收缩和拉伸菌株的对齐中的订单参数。另一方面,MRE由柔软的弹性体(SE)矩阵组成,其嵌入式硬磁性微或纳米果(MMPS或MNP)组成。外部磁场在嵌入的MMP或MNP上产生局部力和扭矩。分离的扭矩会导致身体变形和MRE材料的净旋转,而颗粒所经历的力会融合到净力,从而置换MRE或变形。[31]磁性致动具有远距离,健壮和快速致动的优势,并且瞬间的能力
技术规格Lightforce开关混合光学机电开关Lightspeed无线技术最多5个在板载内存配置文件PTFE脚V脚电池寿命 - 电池寿命可能会根据用户和计算条件而变化,并计算恒定运动300+小时,使用Lightspeed无线,600+ 600+具有蓝牙跟踪传感器:英雄25K分辨率:100 –25,25,600 dpi max Maxs。加速度:> 40 g在Logitech G240游戏鼠标垫上最大。速度:>在Logitech G240上进行的400 IP
WPT系统的耦合系数公式为:$$ k = \ frac {m} {\ sqrt {l_t \ times l_r}} $$ ..WPT的效率随耦合系数的提高。当一个线圈的所有磁通线切开第二个线圈的所有磁通线时,就会发生完美的耦合(k = 1),从而导致相互电感等于两个个体电感的几何平均值。这会导致满足关系$$ \ frac {v_1} {v_2} = \ frac {n_1} {n_2} $$的感应电压。图11提出了一种动画可视化,展示了磁通密度对发射器和接收器线圈之间气隙距离变化的响应。参数AC磁研究生动地证明了反相关关系:随着气隙距离的增加,磁通量密度达到二次线圈的降低,反之亦然。
B. Tharun Kumar先生1,Yaski Vamshi先生2,M。Teja3先生,J。Mohan博士4. Electronics and Communication Engineering部门,航空工程学院,海德拉巴,邓达巴德(Dundigal-500043)摘要:在本文中,一项新技术据称是一项新技术,该技术被无线电车充电站系统。在此过程中,它经过测试并验证了电动汽车的电池充电器。在可持续运输领域开发的无线电动汽车充电技术涉及无线充电电动汽车领域。此过程是电感功率传输,将能量从充电垫发送到电动汽车的电池,而无需提供任何电线或适配器。无线充电的好处包括便利性,因为不需要物理连接器,它会降低充电端口的磨损;消除可能导致电击的环境因素的暴露的安全性。通过充电器和电线的电池电量充电是方便,危险和昂贵的。目前的汽油和汽油发动机技术车辆还会造成空气和噪声污染,此外还有助于温室气体。本文通过电感耦合方法呈现电池的无线电池充电站。在此部分中,在使用MOSFET并控制开关操作的发射机线圈和接收器线圈之间使用了一个驱动电路。因此,确保在发射器线圈中以及每当车辆不存在时打开和关闭。该电台可实现67%的效率水平,可靠性,可靠性,低维护和较长的产品寿命。关键字:电源传输;电vechile;电池充电;无线充电等
www.nxp.com NXP和NXP徽标是NXP B.V.的商标。所有其他产品或服务名称均为其各自所有者的属性。相关技术可以受到任何或全部专利,版权,设计和商业秘密的保护。保留所有权利。©2025 NXP B.V.
摘要 - 大语言模型(LLMS)中的前进已导致其广泛采用和在各个领域的大规模部署。但是,由于其大量的能耗和碳足迹,它们的环境影响,尤其是在推断期间,已经成为人们越来越关注的问题。现有研究仅着眼于推理计算,忽视了网络辅助LLM服务系统中碳足迹的分析和优化。为了解决这一差距,我们提出了AOLO,这是一个用于低碳导向的无线LLM服务的分析和优化框架。AOLO引入了全面的碳足迹模型,该模型量化了整个LLM服务链中的温室气体排放,包括计算推理和无线通信。此外,我们制定了一个优化问题,旨在最大程度地减少整体碳足迹,该碳足迹是通过在体验质量和系统性能限制下的关节优化推理输出和传递功率来解决的。为了实现这种联合优化,我们通过采用SNN作为参与者网络来利用尖峰神经网络(SNN)的能源效率,并提出了一种低碳导向的优化算法,即基于SNN的基于SNN的深度加固学习(SDRL)。全面的模拟表明,与基准软批评者相比,SDRL算法显着降低了整体碳足迹,降低了18.77%,突出了其实现更可持续的LLM推理服务的潜力。
摘要:货运城市机器人车辆(Furbot)是一款预计将在城市环境中自主性行为的完整开车车辆。这一升级已提出了需要解决/解决车辆以实现更高自治的问题。本研究解决了这些主要问题。第一个是为了被保险并在公共道路上合法开车所必需的法律框架/许可问题。第二个是更改,并且升级车辆必须经过一辆完整的自动货运车辆。这项研究的结果导致决定正确分类车辆以解决其许可问题及其在欧洲道路上的法律地位,通过了解车辆的局限性,其中包括车辆的当前状态及其结构性。这项研究的另一个贡献是确定软件和硬件更改车辆必须进行的更改才能完全自主。这包括对正确传感器的识别及其放置和数量。此外,为车辆的软件识别提供了深入的研究,从而为现成的软件提供了有利的选择。此外,还需要突出显示需要满足的可预见问题,对车辆的期望以及要求(将其作为自动驾驶汽车的演示)得到强调。用于演示站点,还研究了用例和站点动态以实现自主权。对这些要求的实用是为了证明自动导航和货运处理(全球采用的共享自动化操作模型)H2020项目,以便在城市环境中交付货物。
摘要:最近的声学遥测定位系统能够以几厘米至几米的规模重建生物体的位置和轨迹。但是,它们提出了几种后勤约束,包括接收器维护,校准程序和对实时数据的访问有限。我们在这里提出了一种基于到达的时间差异(TDOA)算法和全球移动(GSM)通信技术的新颖,易于人才,能量自我的水下定位系统,能够实时找到标记的海洋生物体。我们使用在鱼和底栖无脊椎动物中使用连续和编码标签的经验示例来说明该系统的应用。对操作系统的原位实验测试表现出与当前可用的声学定位系统相似的性能,全球定位误差为7.13±5.80 m(平均值±SD),三分之一的pINGS可以定位在远距离浮标的278 m内。尽管需要进行一些改进,但该原型的设计为自主,可以在各种环境(河流,湖泊和海洋)中从表面部署。事实证明,这对于实时监测各种物种(底栖和全骨)很有用。其实时属性可用于快速检测系统故障,优化部署设计或生态或保护应用。
