异常定位,目的是将图像中的异常区域分割出来,这是由于种类繁多的异常类型而具有挑战性的。现有方法通常是通过将整个图像作为整体而却很少付出的努力来学习局部分布来训练深层模型,这对于这项Pixel Prescerise任务至关重要。在这项工作中,我们提出了一种基于补丁的方法,可以适当考虑全球和本地信息。更具体地说,我们采用本地网络和全球网络分别从任何单个贴片及其周围来提取特征。全球网络经过训练,其目的是模仿本地功能,以便我们可以从上下文中轻松检测其功能不匹配时。我们进一步引入了不一致的异常检测(IAD)头和一个失真异常检测(DAD)头,以足够的时间发现全球和局部特征之间的差异。源自多头设计的评分函数有助于高精度异常定位。在几个现实世界数据集上进行了广泛的实验表明,我们的方法优于最大的竞争对手,而竞争对手的差距足够大。
具有负条件冯诺依曼熵的量子态在多种信息论协议中提供了量子优势,包括超密集编码、状态合并、分布式私有随机性提炼和单向纠缠提炼。虽然纠缠是一种重要资源,但只有一部分纠缠态具有负条件冯诺依曼熵。在这项工作中,我们将具有非负条件冯诺依曼熵的密度矩阵类描述为凸和紧的。这使我们能够证明存在一个 Hermitian 算子(见证人),用于检测任意维度二分系统中具有负条件熵的状态。我们展示了两种此类见证人的构造。对于其中一种构造,状态中见证人的期望值是状态条件熵的上限。我们提出了一个问题,即获得状态条件熵集的严格上限,其中算子给出相同的期望值。我们对两个量子比特的情况用数字方法解决了这个凸优化问题,发现这提高了我们证人的实用性。我们还发现,对于特定证人,估计的严格上限与 Werner 状态的条件熵值相匹配。我们阐明了我们的工作在检测几个协议中的有用状态方面的实用性。
引用Chang,Huibin,Jie Xu,Luke A. Macqueen,Zeynep Aytac,Michael M. Peters,John F. Zimmerman,Tao Xu,Philip Demokritou和Kevin Kit Parker。2022。“用可生物降解的抗菌pullulan纤维进行高通量涂层延长保质期并减少鳄梨模型中的体重减轻。”自然食品3(6):428–36。
近年来,多层感知器 (MLP) 成为计算机视觉任务领域的研究热点。由于没有归纳偏差,MLP 在特征提取方面表现良好并取得了惊人的效果。然而,由于其结构简单,其性能高度依赖于局部特征通信机制。为了进一步提高 MLP 的性能,我们引入了脑启发神经网络的信息通信机制。脉冲神经网络 (SNN) 是最著名的脑启发神经网络,在处理稀疏数据方面取得了巨大成功。SNN 中的泄漏积分和触发 (LIF) 神经元用于在不同时间步骤之间进行通信。在本文中,我们将 LIF 神经元的机制合并到 MLP 模型中,以在不增加 FLOP 的情况下实现更好的准确率。我们提出了一种全精度 LIF 操作来在块之间进行通信,包括不同方向的水平 LIF 和垂直 LIF。我们还建议使用组 LIF 来提取更好的局部特征。借助 LIF 模块,我们的 SNN-MLP 模型在 ImageNet 数据集上分别仅使用 4.4G、8.5G 和 15.2G FLOP 就实现了 81.9%、83.3% 和 83.5% 的 top-1 准确率,据我们所知,这是最先进的结果。源代码将在 https://gitee.com/mindspore/models/tree/master/research/cv/snn mlp 上提供。
了解人类的社会行为对于综合愿景和机器人技术至关重要。微观的观察(例如,分裂行动)不足,需要采取一种全面的方法来考虑个人行为,组内动态和社会群体层次,以彻底理解。要解决数据集限制,本文引入了JRDB-Social,JRDB的扩展[2]。旨在填补跨室内和室外社会环境的人类理解的空白,JRDB-Social提供了三个层次的注释:个体属性,组内侵入和社会群体环境。该数据集旨在增强我们对机器人应用的人类社会动态的理解。利用最近的尖端多模式大型语言模型,我们评估了我们的基准,以表达其破译社会人类行为的能力。
但当错误决策的潜在后果很严重时,就需要更强的态势感知能力。在这种情况下,人类可以充当哨兵,依靠他们的经验来管理风险情况。虽然算法可能擅长识别定义不明确的过程,但也可能需要有经验的人来训练人工智能系统,担任教练的角色。在复杂程度和风险程度很高的情况下,人机交互的需求将达到顶峰,成为一种相互学习的关系。在这种情况下,人类专家是长期、点对点关系中的同伴。
仿射配准在全面的医学图像配准流程中不可或缺。然而,只有少数研究关注快速而鲁棒的仿射配准算法。这些研究中大多数利用卷积神经网络(CNN)来学习联合仿射和非参数配准,而对仿射子网络的独立性能探索较少。此外,现有的基于 CNN 的仿射配准方法要么关注局部错位,要么关注输入的全局方向和位置来预测仿射变换矩阵,这些方法对空间初始化很敏感,并且除了训练数据集之外表现出有限的通用性。在本文中,我们提出了一种快速而鲁棒的基于学习的算法,即粗到精视觉变换器(C2FViT),用于 3D 仿射医学图像配准。我们的方法自然地利用了卷积视觉变换器的全局连通性和局部性以及多分辨率策略来学习全局仿射配准。我们对 3D 脑图谱配准和模板匹配归一化方法进行了评估。综合结果表明,我们的方法在配准精度、稳健性和通用性方面优于现有的基于 CNN 的仿射配准方法,同时保留了基于学习的方法的运行时优势。源代码可在 https://github.com/cwmok/C2FViT 上找到。
该文档计划于12/27/2024发表在联邦公报上,并在https://federalregister.gov/d/2024-30790上在线获取,并在https://govinfo.gov
高质量的高分辨率(HR)磁共振(MR)图像提供了更详细的信息,可用于可靠的诊断和定量图像分析。深度综合神经网络(CNN)显示出低分辨率(LR)MR图像的MR图像超分辨率(SR)的有希望的Abil。LR MR图像通常具有一些vi-Sual特征:重复模式,相对简单的结构和信息较少的背景。大多数以前的基于CNN的SR方法同样处理空间像素(包括背景)。他们也无法感知输入的整个空间,这对于高质量的MR IMPIMSR至关重要。为了解决这些问题,我们提出了挤压和激发推理注意网络(SERAN),以获得MR Image SR。我们建议从输入的全球空间信息中挤出注意力,并获得全球描述符。这样的全球描述符增强了网络专注于MR图像中更具信息区域和结构的能力。我们在这些全球描述符之间进一步建立了关系,并提出了引起关注的原始关系。全球描述符将以学习的关注进一步确定。为了充分利用汇总信息,我们通过学习的自适应注意向量自适应地重新校准了特征响应。这些注意向量选择一个全局描述符的子集,以补充每个空间位置以进行准确的细节和纹理重新分解。我们通过残留的缩放提出挤压和激发注意力,这不仅可以稳定训练,而且还使其对其他基本网络的灵感变得非常灵活。广泛的例证显示了我们提出的Seran的有效性,该塞伦在定量和视觉上清楚地超过了基准标记的最新方法。
