摘要在该领域达成共识,即小胶质细胞在神经发育过程中起着杰出作用,例如突触修剪和神经元网络成熟。因此,出现了当前将小胶质细胞缺陷与神经发育障碍(NDDS)相关的动量。这个概念受啮齿动物的研究和临床数据的挑战。有趣的是,小胶质细胞的数量减少或小胶质细胞功能不一定会导致明显的NDD表型,而神经精神病症状似乎主要在成年期发展。因此,仍然开放讨论小胶质细胞是否确实是健康神经发育必不可少的。在这里,我们批判性地讨论了小胶质细胞在突触修剪中的作用,并突出区域和年龄依赖性。我们提出了在NDD的背景下的小胶质细胞介导的突触修剪的更新模型,并讨论了针对这些疾病治疗这些疾病的小胶质细胞的潜力。
STRAIGHT ACE STRAIGHT ACE 我们的工程团队一直在努力尝试帮助较小的范围和练习区域。Straight Ace 是我们有史以来最轻的拾取器,可减轻您的车辆负担并更轻松地牵引!设计为可逆,可进出最狭窄的空间。其效率和耐用性在业内无与伦比!几乎没有活动部件,非常耐用。配备一个长滚筒和 3 个篮子,便于包装、运输和储存!#SA01B- Straight Ace One-黑色(包括 A 型框架)#SA01W- Straight Ace One-白色(包括 A 型框架)
现代,相互联系,意识到传统:马丁·路德大学哈雷·韦滕伯格(MLU)是萨克森 - 安哈尔特州的古老和最大的大学,历史可以追溯到500多年。今天,有20,000多名学生入学。MLU的核心研究领域都在纳米科学和生物科学,启蒙运动以及社会和文化研究中。大学也是一系列小学科的所在地,其中有些在德国没有其他地方。该大学具有国家和国际联系,并与领先的研究机构,工业和全球250多所大学紧密合作。The Martin Luther University Halle-Wittenberg, in cooperation with the German Centre for Integrative Bio- diversity Research (iDiv) Halle-Jena-Leipzig, offers the following position in Leipzig, starting as soon as pos- sible and limited for 36 months (if PhD position) or 26 months (if Postdoc Position): Scientific employee for the Biodiversa+ Project “WildINTEL” (m/f/d)
摘要:可见波长超大规模集成 (VLSI) 光子电路有可能在量子信息和传感技术中发挥重要作用。可扩展、高速、低损耗的光子网格电路的实现取决于可靠且精心设计的可见光子元件。本文我们报告了一种基于压电驱动机械悬臂的低压光学移相器,该移相器是在 CMOS 兼容的 200 毫米晶圆可见光子平台上制造的。我们展示了差分操作中 6 V π -cm 的线性相位和幅度调制、-1.5 dB 至 -2 dB 的插入损耗以及 700 nm - 780 nm 范围内高达 40 dB 的对比度。通过调整选定的悬臂参数,我们演示了一个低位移和一个高位移装置,两者均表现出从直流到峰值机械共振的几乎平坦的频率响应,分别在 23 MHz 和 6.8 MHz,通过共振增强 Q~40,进一步将工作电压降低至 0.15 V π -cm。