摘要:随着人工智能在传统软件系统中的应用越来越广泛,两个以前彼此陌生的世界正变得越来越接近,即成熟的软件工程学科和人工智能世界。一方面,数据科学家试图使用各种工具、极大的自由和创造力从数据中提取尽可能多的见解。另一方面,软件工程师经过多年和几十年的学习,已经学会了提供尽可能高质量的软件并管理发布状态。在开发包含人工智能组件的软件系统时,这两个世界会发生碰撞。本文将展示哪些方面会在这里发挥作用,哪些问题可能会出现,以及这些问题的解决方案可能是什么样子。除此之外,软件工程本身也可以从使用人工智能方法中受益。因此,我们还将研究软件工程的新兴研究领域人工智能。
GHG排放,范围1 + 2,按1型[MT CO 2 EQ] CO2 CO2 126,923 106,932 CH4 98 88 N2O 214 141范围1和2,按地区[MT CO 2 EQ]美国和加拿大105,364 89,305欧洲,以及World 25,603 21,603 21,125 21,1125 scece + World Worlds Scepe 110,430 % Reduction Scope 1 and 2 (from 2016) 4500 59 Scope 1 +2 normalized to revenue 18.0 16.0 Scope 1, facilities, and fleet by type 2 [MT CO 2 eq] CO2 82,146 68,104 CH4 47 42 N2O 143 79 Total Worldwide Scope 1 GHG emissions 86,078 71,495 Scope 1 normalized to revenue [MT CO2EQ/ $ M] 12.0 10.4范围1,设施和舰队2 [MT CO 2 EQ] 2 44,900 38,935 Scope 2 normalized to revenue [MT CO2eq/ $M] 6.2 5.7 Scope 2, by region U.S. and Canada 24,879 21,571 Europe and rest of world 20,021 17,364 Scope 3, by category [MT CO 2 eq] Global unless otherwise indicated Purchased good and services 928,120 869,347 Capital goods 8,668 6,455
在与未经测试的未经测试的(用于缓解气候变化和适应性的DTS中的DTS中,在长期天气预测,城市规划中的DTS中的DTS)混合(在长期天气预测中的DT)时,特殊问题表明了地球的DTS作为当今科学和技术的自然进化。通过将地球系统仿真与来自卫星,无人机,海底电缆,浮标,作物传感器和手机的信息整合在一起,地球的DTS被据称为人类世代的决策提供了科学基础(Bauer等,2021; Li et al。,2023; 2023; Rao等,2023)。对忠实地重现经验世界细节的产品的渴望并不新鲜。Carloll(1893)和Borges(1998)都写了关于国家的虚构故事,其地图变得如此详细,以至于与领土本身一样大。结果,这些地图被认为是无用的,并被遗忘了。无论这些故事与DT的关系如何,都必须在小型,稳定的世界和不确定的,不稳定的世界中区分封闭世界和开放世界或决策理论术语。复杂的建模可能适用于封闭的世界,但对于气候和环境等开放式系统而言,不需要必要。如果没有广泛的科学局限性,它们所构成的社会风险以及他们可能提供的知识(以及他们不提供的知识),不应发生大型模型(例如地球DTS)等大型模型的发展和应用。尽管地球系统建模有可能为某些领域内的政策制定提供信息,但我们认为,作为实际问题,地球的一部分引起了一些重要问题。通过承认通常被忽略的内容:与建模相关的基本无知,可以将这种批判性观点作为过早政策关闭的保障。
在与未经测试的未经测试的(用于缓解气候变化和适应性的DTS中的DTS中,在长期天气预测,城市规划中的DTS中的DTS)混合(在长期天气预测中的DT)时,特殊问题表明了地球的DTS作为当今科学和技术的自然进化。通过将地球系统仿真与来自卫星,无人机,海底电缆,浮标,作物传感器和手机的信息整合在一起,地球的DTS被据称为人类世代的决策提供了科学基础(Bauer等,2021; Li et al。,2023; 2023; Rao等,2023)。对忠实地重现经验世界细节的产品的渴望并不新鲜。Carloll(1893)和Borges(1998)都写了关于国家的虚构故事,其地图变得如此详细,以至于与领土本身一样大。结果,这些地图被认为是无用的,并被遗忘了。无论这些故事与DT的关系如何,都必须在小型,稳定的世界和不确定的,不稳定的世界中区分封闭世界和开放世界或决策理论术语。复杂的建模可能适用于封闭的世界,但对于气候和环境等开放式系统而言,不需要必要。如果没有广泛的科学局限性,它们所构成的社会风险以及他们可能提供的知识(以及他们不提供的知识),不应发生大型模型(例如地球DTS)等大型模型的发展和应用。尽管地球系统建模有可能为某些领域内的政策制定提供信息,但我们认为,作为实际问题,地球的一部分引起了一些重要问题。通过承认通常被忽略的内容:与建模相关的基本无知,可以将这种批判性观点作为过早政策关闭的保障。
或者不能扩展到具有无限自由度的系统 [3],否则。但该理论的普遍成功和所有现有的经验证据都强烈表明,真实的物理对象是“经典的”,这意味着它们不显示量子属性,只是近似地显示量子属性。严格来说,并不存在完全经典的物体,因为我们接触的一切都是由原子和光子组成的,它们遵循量子理论。在制定自然界的基本理论时,使用仅在近似范围内有效的有效概念是没有说服力的。因此,将量子理论解释为一种普遍理论的尝试,如多世界、隐变量等,并不依赖于对经典对象的假设。将量子理论解释为一种既不假设经典对象,也不假设不可观测的世界、不可观测的变量或不可观测的物理的普遍理论的一种可能性是关系量子力学 (RQM) [4, 5]。 RQM 将理论的解释建立在大量事实的基础上,稳定事实只是其中的一部分。这些被称为相对事实。
在所有这些不连续性中,技术的进步将是企业如何在未来成功以及社会如何面对这些挑战的基本构建基础。的确,只需要查看量子计算和替代数据的未来,从而导致诸如生成人工智能(AI)和行为生物识别技术等创新,这些创新为所有行业提供了挑战和机遇,其中包括其中的金融服务。科学技术方面的这一进步有可能使五个“世界”的发展可以改变当今的社会。虽然每个人似乎都有未来派,但几年前每个世界都可能存在任何元素,正如上面的侧边栏中所强调的那样。以这种方式研究未来可以帮助领导者对金融服务行业的不同思考。尤其是,每种情况都涉及机会和风险(图1),因此领导者可以做出选择:什么可以帮助实现最佳场景,如果不采取行动,会产生不利影响的可能性?