金块博物馆对未来充满信心,并希望在未来的展览中展出回收的物品。VLSMOA 和人类学系很高兴为金块博物馆提供帮助,我们要感谢所有协助恢复工作的人,以及奇科消防局 5 号部门负责人 Jesse Alexander,他慷慨地让我们使用他们的设施进行恢复后的冲洗和清理。我们还要感谢人类学系的教职员工 Carly Whelan 博士、Rachel Hensler 博士和 Georgia Fox 博士,以及学生志愿者 Ky Abernathy、Brittany Caswell、Nialls Hackley、Genevieve Hillery、Benjamin Longmire、Josh Nowakowski、Alina Tichinin 和 Susan Whaley。
尽管如今服装上的集成传感器是核心领域,但纺织品上集成传感器技术的新用途在当前研究中也越来越受到重视。织物用于许多与个人服装无关的领域。这些领域包括汽车工业、家居服装、农业、建筑材料、海运业等。[7,10] 应用纺织技术生产智能纺织品可以提高产品在这些领域的价值,公司可以利用这些价值推出新产品。智能纺织品可以提供用于意想不到的应用的工具,例如使用新纺织材料和标准电子设备为织物添加湿度或存在检测等功能。[11] 集成纺织传感器的一些优点是能够以更低的成本覆盖比标准传感器更长的区域,比电子元件的要求更少,或者能够监测物理或化学刺激而不会显着影响织物的结构。生产纺织传感器的集成方法也是世界各地的研究领域,其中可以找到各种各样的方法。有以化学为导向的方法,如逐层自组装法[12]、通过电磁场集成(静电纺丝)[13],以及使用纺织工艺引入传感器的方法,如刺绣或机织制造方法。不同的研究已经证明,刺绣是最具成本效益的原型设计和小规模生产技术,因为它可以快速制作原型并且所需机器成本低廉。以前关于电容式叉指传感器的研究[14–16]是使用刺绣作为集成方法进行的。然而,当纺织传感器用于医疗保健应用时,小规模生产可能是一个缺点。众所周知,机织织物可以大规模生产,成本低于刺绣。此外,编织技术可以生产完全集成且非触摸感应的纺织传感器。[17]编织电子纺织品也是一个不断发展的研究领域,近年来一直在增长。 [18,19] 编织技术为纺织品传感器的集成提供了更好的效果,同时保持了基材的纺织品特性。多年来,湿度一直是医院或养老院的关键因素。与长期接触相关的伤害
编织材料变形发生在将织物形成更复杂的纺织结构的过程中,以及在成品的开发过程中。多种因素影响纺织材料的变形特性。关键因素是所用纱线的特性、织物的结构以及经纱和纬纱的密度。编织材料的各向异性特性要求分析织物经向和纬向的变形。此外,研究还包括分析与经向成 45° 角的编织材料变形。研究结果表明,增加纬纱的密度可以改善纬向和 45° 角的屈服和断裂极限特性。根据所得结果,提出了可用于预测平纹编织纺织材料在经向、纬向和 45° 角处受拉时变形的依赖关系。
天然/合成混合增强聚合物复合材料具有显著的特性,而且大多数由这些材料制成的部件都会受到循环载荷,因此在结构应用中,其应用的市场份额正在迅速增长。它们的疲劳性能受到了广泛关注,因为由于纤维之间的协同作用,预测它们的行为是一项挑战。这项研究的目的是表征六层凯夫拉纤维与一层编织洋麻增强环氧树脂混合而成的拉伸、压缩和拉伸-压缩疲劳行为,重量分数为 35%。进行了疲劳试验,并以 60%、70%、80% 和 90% 的极限压缩应力进行循环加载。结果完整描述了拉伸和压缩性能,可用于预测疲劳引起的失效机制。
Toyota Safety Sense 系统可有效减少造成死亡或受伤的严重交通事故,该系统包含多种主动安全功能,包括预碰撞安全系统 (PCS),可帮助避免与前方车辆或行人发生碰撞;车道偏离警报系统 (LDA),有助于防止因偏离车道而导致事故;自动远光灯系统 (AHB),有助于确保夜间前方视野清晰。Toyota Safety Sense 目前已在日本、美国和欧洲市场的几乎所有乘用车车型上配备。该系统还已在包括中国和其他部分亚洲国家、近东和中东以及澳大利亚在内的 144 个国家和地区的主要市场推出,并已安装在全球超过 4.05 亿辆汽车上。
先进的光纤解决方案一种直接且不显眼地编织到织物中的基于光纤的条形码可以通过自动分拣设备中的传统光谱仪快速读取,从而完成从初始制造到重复使用的整个循环。为了实现这种光纤条形码,林肯实验室国防织物发现中心和密歇根大学的研究人员设计了一种光子光纤,其可调整的周期性可以提供织物组成材料的光学特征。开发过程使用由交替层市售聚合物(即聚碳酸酯和聚甲基丙烯酸甲酯)薄膜组成的预制件,将这些层热拉伸成层厚度小于 5 微米的微纤维。可以通过拉伸过程控制光纤的光子反射和吸收特性,以创建不同织物特有的聚合物组合。
日本东京,2022 年 2 月 17 日——帝人株式会社今天宣布,该公司已推出一种轻质、坚固且经济高效的碳纤维机织织物,该织物采用该公司专有的丝束铺展技术开发而成。这种新型机织织物采用 3K(3,000)碳纤维长丝制成,适用于需要低重量和设计灵活性的应用,例如汽车内饰材料和体育用品。帝人利用其内部的丝束铺展技术,成功地将 3K 织物从成型厚度 0.2 毫米减薄至约 0.15 毫米,与 1K 机织织物成型为碳纤维增强塑料 (CFRP) 时的厚度相同。由于织物交叉纱线的平坦起伏,用帝人新织物制成的 CFRP 具有出色的平滑度,与用 1K 碳纤维机织织物制成的 CFRP 相比,其强度更稳定(根据该公司的内部研究)。此外,帝人特殊的丝束铺展技术效率高,使织物成本低于传统的 1K 碳纤维机织织物。此外,尽管使用 3K 纱线(200g/m 2),帝人仍将重量减轻了 35%,与使用 1K 纱线(125g/m 2)制成的织物相同。帝人现在将向工业和体育产品制造商推销其新面料。加上帝人产品组合中的其他铺展丝束碳纤维机织织物,该公司的目标是在 2030 财年实现 20 亿日元的销售额。展望未来,帝人将继续通过其他创新、高性能材料和解决方案加强其碳纤维产品线,并秉持成为一家支持未来社会的公司这一长期愿景。
无论是有意产生声波还是试图减轻不必要的噪音,声音控制都是一个充满挑战和机遇的领域。这项研究探讨了传统织物作为声音发射器和抑制器的作用。当将丝绸织物连接到压电纤维致动器的单股上时,它会发出高达 70 dB 的声音。尽管织物结构复杂,但振动计测量结果显示其行为让人联想到经典的薄板。通过比较织物分析发现,相对于粘性边界层厚度的织物孔径会影响声发射效率。使用两种不同的机制证明了声音抑制。在第一种中,直接声干扰可将声音降低高达 37 dB。第二种依靠压电纤维平息织物振动,将振动波的幅度降低 95%,并将传输的声音衰减高达 75%。有趣的是,这种振动介导的抑制原则上可以无限减少声音。它还可以动态控制织物的声反射率,最高可提高 68%。130 μ m 丝织物的声音发射和抑制效率为服装、交通运输和建筑等各种应用中的声音控制提供了机会。
一月份投资活动 1 月 6 日——日本发射服务初创公司 Interstellar Technologies Inc.(Interstellar)宣布从丰田汽车公司子公司 Woven by Toyota, Inc.(Woven)获得 4400 万美元新投资,同时 Woven 和 Interstellar 建立战略合作伙伴关系,以改进火箭产量。 1 月 14 日——卫星运营商 Loft Orbital, Inc. 在 C 轮融资中筹得 1.7 亿美元,由 Tikehau Capital SCA 和 Axial Partners, LLC 领投,Bpifrance Financement、Foundation Capital, LLC、淡马锡国际等跟投。 1 月 15 日——发射服务初创公司 Stoke Space Technologies, Inc. 在 C 轮融资中筹得 2.6 亿美元,新老投资者跟投,包括 Breakthrough Energy Ventures、Glade Brook Capital Partners LLC、Industrious Ventures、Point72 Ventures, LLC 等。该公司将利用这笔资金继续研发其 Nova 中型运载火箭并翻新其发射场。
空中客车 Gillfab ® 4123 5360 M1M 000500 类型 MDC2 玻璃布酚醛饰面/间位芳纶蜂窝芯 Gillfab ® 4223 5360 M1M 000500 类型 BCC2 玻璃布酚醛饰面/间位芳纶蜂窝芯 Gillfab ® 4405A/B TL 53/5000/79 类型 PC3-1、PC3-2 玻璃布环氧饰面/间位芳纶蜂窝芯 Gillfab ® 4422 2550 M1M 000800 类型 A-N 玻璃布酚醛饰面、Tedlar/间位芳纶蜂窝芯 Gillfab ® 4505 5360 M1M 000600 类型 PC3 UD 碳酚醛饰面/间位芳纶蜂窝芯 Gillfab ® 4522 5360 M1M 000500 CCC1 型 玻璃布酚醛饰面/间位芳纶蜂窝芯 Gillfab ® 4523 5360 M1M 000500 BCC3 型 UD,玻璃布酚醛饰面/间位芳纶蜂窝芯 Gillfab ® 4605 5360 M1M 000600 PC1 型 UD 碳酚醛饰面/间位芳纶蜂窝芯 Gillfab ® 5509 ADET 0096 I-III 型 UD 碳酚醛饰面/对位芳纶蜂窝芯