由于结构简单,RRAM 单元(也称为忆阻器)可以集成到高密度、低功耗、高速度的设备中。RRAM 设备的重要性在于它们具有电阻切换功能;即,它们能够通过施加适当的电压在高阻和低阻状态之间切换相应的电阻。然而,这种电阻切换机制目前还不太清楚,仍然存在争议。
在过去的三十年中,低维系统从基本和技术的角度引起了越来越多的兴趣,这是由于其独特的物理和化学特性。X射线吸收光谱(XAS)是表征这种系统的强大工具,这是由于其化学选择性和在原子间距离测定中的高灵敏度。此外,该技术可以同时提供有关纳米材料的电子和局部结构特性的信息,这显着有助于阐明其原子结构与其特殊的物理特性之间的关系。本综述提供了XAS的一般介绍,讨论了该技术的基本理论,最常用的检测模式,相关的实验设置和一些互补的相关特征技术(DAFS,EXELFS,PDF,PDF,XES,HERFD XAS,XRS,XRS)。随后将介绍XAS光谱对2D,1D和0D系统的重要应用。选定的低维系统包括IV和III-V半导体膜,量子孔,量子线和量子点;基于碳的纳米材料(外延石墨烯和碳纳米管);金属氧化物膜,纳米线,纳米棒和纳米晶体;金属纳米颗粒。最后,讨论了将XAS应用于纳米结构的未来观点。
摘要:在过去的几十年中,X 射线吸收光谱 (XAS) 已成为探测非均相催化剂结构和成分、揭示活性位点的性质以及建立催化剂结构模式、局部电子结构和催化性能之间联系的不可或缺的方法。本文将讨论 XAS 方法的基本原理,并描述用于解读 X 射线吸收近边结构 (XANES) 和扩展 X 射线吸收精细结构 (EXAFS) 光谱的仪器和数据分析方法的进展。本文将介绍 XAS 在非均相催化领域的最新应用,重点介绍与电催化相关的示例。后者是一个快速发展的领域,具有广泛的工业应用,但在实验表征限制和所需的高级建模方法方面也面临着独特的挑战。本综述将重点介绍使用 XAS 对复杂的现实世界电催化剂获得的新见解,包括其工作机制和化学反应过程中发生的动态过程。更具体地说,我们将讨论原位和原位 XAS 的应用,以探测催化剂与环境(载体、电解质、配体、吸附物、反应产物和中间体)的相互作用及其在适应反应条件时的结构、化学和电子转变。
4. 研究专长和兴趣 a) 专业领域:材料科学、纳米催化、X 射线吸收光谱、原位 XAS 研究、高级 XAS 数据分析、机器学习方法、原子模拟技术(分子动力学、逆蒙特卡罗方法)、全局优化技术(模拟退火、进化算法)、线性代数方法(主成分分析、多元曲线分辨/盲源分离方法)、理论物理(介观电荷传输、量子计算、统计物理)、一些计算流体动力学经验。 b) 目前的研究兴趣:使用时间分辨 XAS 方法对材料进行实验研究,将 XAS 的结构和动力学信息与材料特性和功能联系起来。我对开发和应用先进的数据分析方法特别感兴趣,以充分利用 X 射线吸收光谱中编码的信息,并将实验测量与理论建模的结果相结合。 c) 参与同步辐射装置的实验; XAS 经验:我曾参加过 BESSY、DORIS、PETRA III 和 ANKA(德国)、SLS(瑞士)、ELETTRA(意大利)、SOLEIL、ESRF(法国)、ALBA(西班牙)、SSRL、NSLS-II APS(美国)同步辐射设施的 XAS 实验,包括荧光、透射模式和掠入射模式的测量、温度相关、压力相关 XAS 测量、催化过程的原位研究、RIXS 测量(APS、ESRF)、QXAFS 模式测量(NSLS-II、SOLEIL、SLS 和 DESY)、X 射线拉曼散射实验(ESRF)和光学色散装置测量(SOLEIL)。此外,我还在 SOLEIL 同步加速器和基于同步加速器的 XRD(NSLS II 和 DESY)方面有 FTIR 测量经验。目前,我还领导着一个团队,负责设计 PETRA III/IV 上由马克斯·普朗克学会资助的新光束线,该光束线致力于使用 XAS、XRD、SAXS 和 XES 方法对催化剂进行原位研究。此外,我和 FHI 的团队目前正在努力改造新的实验室 XAS 光谱仪,以对催化剂进行原位研究。我与他人合作撰写了 100 多篇关于 XAS 研究的论文,其中包括关于 XAS 数据分析高级方法的论文。 d) 参与重大研究项目:CatLab 研究平台的扩展(德国联邦教育与研究部(BMBF)和马克斯普朗克学会资助):与 Beatriz Roldan Cuenya 教授共同提议设计 PETRA 同步加速器的光束线前端站,2021 年至今美国国家科学基金会项目工具包,用于表征和设计 DMREF 计划下的双功能纳米颗粒催化剂(合作项目,涉及叶史瓦大学/石溪大学、德克萨斯大学奥斯汀分校、匹兹堡大学),2015 年 – 2018 年。EUROFUSION 项目 ODS 颗粒何时以及如何形成?- ODS 钢和高蠕变强度 ODS 钢的 X 射线吸收光谱和从头算建模(拉脱维亚大学与德国卡尔斯鲁厄理工学院和西班牙 CIEMAT 合作项目),2014- 2015 年。 EURATOM 项目 实验室规模的纳米结构 ODSFD 批次的生产和特性以及模型的实验验证(拉脱维亚大学与德国卡尔斯鲁厄理工学院和芬兰赫尔辛基大学合作项目,2013 – 2015 年。 e) 参加暑期学校和研讨会 1) 原子模拟技术暑期学校(2010 年 7 月 4 日 - 2010 年 7 月 25 日,意大利的里雅斯特); 2) 超快 X 射线科学与 X 射线自由电子激光器 (2011 年 3 月 29 日至 2011 年 4 月 2 日,德国汉堡 DESY);3) 第 32 届柏林中子散射学校 (2012 年 3 月 7 日至 2012 年 3 月 16 日,德国柏林 HZB)。4) HERCULES-2013(大型实验系统用户高级欧洲研究课程)(2013 年 2 月 24 日至 2013 年 3 月 28 日,法国格勒诺布尔 ESRF)。
X射线吸收是一种通过样品的元素构成来研究物质的方法。该方法对像2P(如2p)的共振内壳激发特别敏感!3D或3D!4F过渡,可以获得亚层敏感性。在这里,我们报告了总电子产量的Everhart - Thornley(ET)检测方案,该方案可在低光子通量下具有高质量的XAS,这是辐射敏感样品的曼陀罗。我们将ET电子产量检测方案应用于HO M 5和M 4边缘的HO 3 N@C 80内hode骨的单层量的X射线吸收。分子(如内叶列烯)是分子旋转型和电子产品的候选成分,其中XAS可能会揭示内侧单元的构象和磁性。1在当前的XAS应用中,我们研究了温度内部方向的可能变化,众所周知,单层内叶烯的平均方向可能在30 K和室温(RT)之间变化。2
在过去的几年中,已使用两种主要方法来研究Fe 2+的分布和局部协调环境和固体中的Fe 3+离子在微米或亚微米计尺度上:(1)X射线吸收光谱(XAS)与同步型光源(尤其是第二个和第三代能量的启发)(尤其是较高的能量射击量和高量)(尤其是较高的能量范围)(2001)和(2)具有透射电子显微镜的电子能量损失光谱(EEL)(在纳米尺度上提供高空间分辨率)(Van Aken等人。1998,1999)。 For XAS and EELS, the methodology consists first of probing the absorption jump on either side of the Fe- K edge [1s → con- duction band (CB) electronic transitions], or the Fe- L 2,3 edge (2p → CB), or the Fe- M 2,3 edge (3p → CB), and then of processing the experimental absorption to extract the information from both Fe 2+ and Fe 3+ components. 铁表现出未填充的3D状态(3d 51998,1999)。For XAS and EELS, the methodology consists first of probing the absorption jump on either side of the Fe- K edge [1s → con- duction band (CB) electronic transitions], or the Fe- L 2,3 edge (2p → CB), or the Fe- M 2,3 edge (3p → CB), and then of processing the experimental absorption to extract the information from both Fe 2+ and Fe 3+ components.铁表现出未填充的3D状态(3d 5
摘要:由于 Pb 和 3d 过渡金属 (TM ) 氧化还原能级可能交叉,Pb 和 TM 之间的电荷转移导致钙钛矿家族 PbT MO 3 中从 Pb 2+ Ti 4+ O 3 连续演变为 Pb 4+ Ni 2+ O 3,这已被多份报告证实。然而,关于 PbT MO 3 系列中的 PbMnO 3 的信息知之甚少。钙钛矿 PbMnO 3 是最难合成的,尽管它的几何公差因子接近 1。本文,我们通过结构细化和高精度 X 射线吸收光谱 (XAS) 以及各种物理性质测量,仔细研究了在 15 GPa 下合成的 PbMnO 3。我们可以根据局部键合模型和 XAS 中 Pb 和 Mn 的价态合理化 PbMnO 3 的物理性质。此外,对 PbMnO 3 的全面研究使我们能够为整个 PbT MO 3 钙钛矿家族构建更一致的价态演变和电荷不均化图。
在广泛的能量范围内的高光子通量涵盖了广泛的元素快速扫描:Quick-exafs(50Hz)高速数据采集链,以及在20 UM尺寸
在Q空间中进行了拟合。r是Fe – Back -scatter距离。2是Debye -Waller因子。r-factor和降低的CHI 2是拟合参数(请参见文本中的XAS/EXAFS部分)。s o 2 = 1在所有拟合中均使用。最佳拟合如图S1所示。
特征在不同入射的光子能量下显示最大值,这是由于表面和散装特征的相对贡献4 f状态的部分密度而产生的。the ce 3 d –4 f m边缘的XAS还显示了相应的最终状态f 1和f 2特征。可以使用完整的多重计算与简化的单个Imberity Anderson模型方法一起模拟t = 25 K和300 K之间XAS光谱的弱温度依赖性。计算确认了近托筛选,并允许在CEAGSB 2中定量批量ce 4 f电子计数。CE 5 s状态显示了一种交换分裂,可反映CE 4 F状态的局部磁矩。总体结果表征了体积和表面敏感的CE 4 F状态,并表明了近代效应在形成CEAGSB 2中适度增强的重型载体载体中的作用。