结核病是一个在全球范围内的问题,由于抗药性不断发展,对经济造成了负担。需要开发新的抗结核药物,并且可以通过抑制可毒靶标实现。结核分枝杆菌烯酰酰基载体蛋白(ACP)还原酶(INHA)是结核分枝杆菌存活的重要酶。在这项研究中,我们报告了可以通过抑制该酶来治疗结核病的伊萨蛋白衍生物的合成。化合物4L显示IC 50值(0.6±0.94 µm)类似于异念珠菌,但对MDR和XDR结核分枝杆菌菌株(MIC分别为0.48和3.9 µg/ mL)也有效。分子对接研究表明,这种化合物通过在活性部位使用相对未开发的疏水口袋结合。分子动力学用于研究和支持4L复合物与靶酶的稳定性。这项研究为新型抗结核药物的设计和合成铺平了道路。
海洋具有大量的微生物多样性,在海水,海洋沉积物和海洋生物中广泛普遍存在。与传统自然产品研究中探索的地面资源相反,海洋微生物的栖息地明显独特。放线菌是继发代谢产物的重要来源,包括抗生素和其他有效的天然产物,例如链霉素和四环素。他们在诸如致病细菌感染等明显疾病的临床治疗中起着关键作用。然而,广泛使用抗生素导致抗药性细菌的种类和数量急剧增加,尤其是耐多药(MDR)和广泛的耐药(XDR)细菌,在临床环境中,对人类生存构成严重威胁。因此,即时需要发现结构新颖的抗菌天然产品并开发新的抗生素。这项迷你评论总结了来自2024年出版的海洋放线菌的45种新型抗菌天然产品。这些产品,包括聚酮化合物,生物碱,大酰胺类和肽,在其结构和生物活性方面突出显示。本文的目的是为新型抗生素的研究和开发提供宝贵的见解。
多(MDR),广泛(XDR),极度(XXDR)和总(TDR)耐药性结核分枝杆菌(M. tubercolcolcosis)菌株被认为是潜在的全球流行威胁,需要需要开发新的结核病(TB)预防和治疗策略。大麻结核病在感染和逃避宿主免疫系统中的效力部分是由于其独特而动态的细胞包膜,主要由脂质和碳水化合物组成。动态细胞包膜会改变以响应局部环境因素来适应不同的肺微环境,并且由于其低渗透性而保护病原体免受恶劣环境和许多抗菌药物的保护。因此,抗TB剂的大多数组合处理靶向分枝杆菌细胞包膜。对药物敏感的结核病的标准临床治疗包括服用四种一线药物6个月(2个月的Isoniazid,Rifampicin,Ethambutol和吡嗪酰胺进行了2个月,其次是4个月的异尼氏酶和利福平),成功率为85%(WHO,2019年)。然而,近年来,全球抗药性菌株的出现,尤其是在结核病地区,构成了全球威胁。[1]
抗菌对多种抗生素的抗药性的全球出现最近已成为一个重要的关注点。革兰氏阴性细菌,以获取移动遗传因素(例如质粒)的能力而闻名,它代表了最有害的微生物之一。这种现象对公共卫生构成了严重威胁。值得注意的是,Tigecycline(抗生素糖基因clyclines的成员和四环素的衍生物)的显着意义增加了。tigecycline是用于治疗由多种耐药性(MDR)细菌引起的复杂感染的最后一个度假抗菌药物之一。Tigecycline耐药性的主要机制包括EF泵泵的过表达,TET基因和外膜外孔。ef伏特泵对于通过排除抗生素(例如通过直接排出的替甘克林)来赋予多药耐药性至关重要,并降低了其浓度到亚毒性水平。本综述讨论了Tigecycline耐药性的问题,并提供了重要信息,以了解肠杆菌中替物环素抵抗的现有分子机制。对最后一度治疗方案具有抗性病原体的出现和传播是全球主要的医疗保健问题,尤其是当微生物已经对碳青霉烯和/或colistin具有抗性时。
本文全面分析了从传统边界安全模型向零信任 (ZT) 框架的转变,强调了转变中的关键点和 ZT 的实际应用。它概述了 ZT 政策与传统安全政策之间的差异,以及影响 ZT 演变的重要事件。此外,本文还探讨了人工智能 (AI) 和量子计算等新兴技术对 ZT 政策和实施的潜在影响。该研究彻底检查了 AI 如何利用机器学习 (ML) 算法分析模式、检测异常和预测威胁,从而改进实时决策过程,从而增强 ZT。此外,本文还展示了基于混沌理论的方法如何与扩展检测和响应 (XDR) 等其他技术结合,有效缓解网络攻击。由于量子计算对 ZT 和整个网络安全提出了新的挑战,本文深入探讨了 ZT 迁移、自动化和编排的复杂性,解决了与这些方面相关的复杂性。最后,本文提供了一种在组织中无缝实施 ZT 的最佳实践方法,列出了建议的指导方针,以促进组织向更安全的 ZT 模型过渡。该研究旨在支持组织成功实施 ZT 并加强其网络安全措施。
Trellix 欢迎有机会为 NIST 网络安全框架 (CSF) RFI 提供意见。Trellix 是一家活跃的安全公司,正在重新定义网络安全的未来。Trellix 正在为世界各地的组织提供适应性强、创新的安全解决方案。该公司的开放和本地扩展检测和响应 (XDR) 平台提供了一个整体生态系统,将安全产品整合到一个互联、不断通信的平台中,该平台始终在学习和适应新的和不断发展的威胁。Trellix 由技术精湛的 McAfee Enterprise 和 FireEye 团队共同打造,致力于通过提供一流的技术和专业知识来改变组织对数字安全的看法。当今充满活力的世界需要一个整体的集成生态系统和云优先方法,使所有安全产品能够协同工作。通过利用机器学习和自动化的力量来解锁见解并简化工作流程,Trellix 可帮助组织领先对手一步、适应新威胁并在整个网络防御生命周期内加速检测和纠正。Trellix 的网络安全和威胁专家以及广泛的全球合作伙伴生态系统正在加速安全技术创新。Trellix 正在帮助 40,000 多家面临当今最先进威胁的企业和政府客户组织对其运营的保护和弹性充满信心。
沙门氏菌是一种粮食性的致病细菌,在全球范围内引起沙门氏菌病。此外,沙门氏菌被认为是食品安全和公共卫生的严重问题。几种包括氨基糖苷,四环素,酚和B-乳酰胺的抗菌类别用于治疗沙门氏菌感染。抗生素已经开了数十年,以治疗由人类和动物医疗保健中细菌引起的感染。然而,大量使用抗生素会在包括沙门氏菌在内的几种食源性细菌中产生抗生素耐药性(AR)。此外,沙门氏菌的多药耐药性(MDR)急剧增加。除了MDR沙门氏菌外,全球据报道,除了MDR沙门氏菌,广泛的耐药性(XDR)以及PAN耐药(PDR)沙门氏菌。因此,增加AR正在成为严重的普遍公共卫生危机。沙门氏菌开发了许多机制,以确保其对抗菌剂的生存。针对这些抗生素的最突出的防御机制包括酶促失活,通过EF伏特泵从细胞中排出药物,改变药物的结构以及改变或保护药物靶标。此外,沙门氏菌的生物膜和质粒介导的AR形成,增强了其对各种抗生素的耐药性,使其在医疗保健和食品行业环境中都是充满挑战的病原体。本综述仅着重于提供沙门氏菌中AR机制的详细概述。
发布于2022年9月7日宣布启动2022年9月16日的身体尺寸160.7 x 77.6 x 77.6 x 7.9毫米(6.33 x 3.06 x 0.31 x 0.31英寸)重240 g(8.47盎司)建造玻璃前部(gorilla玻璃),玻璃玻璃(Gorilla玻璃),玻璃架(Gorilla Glass),sim sim sim sim nano sim -esim nano sim -esim nano sim -esim - - 美国双SIM SIM(Nano -SIM,双待机) - 中国IP68防尘/防水性(30分钟内最高6m)Apple Pay(Visa,MasterCard,Amex认证)显示类型LTPO超级Retina XDR OLED,120Hz,120Hz,120Hz,120Hz,120Hz,HED10,HDR11,Dolby Vision,1000 Nits(1000 Nits),1000 Nits(Typ),2000 NITS(典型),2000 nits(2000 nit),〜8 88英寸(HBM),〜8 88英寸(HBM),〜8 88英寸(HBM),屏幕与体型比)1290 x 2796像素,19.5:9比率(〜460 ppi密度)保护抗刮擦的陶瓷玻璃,含有含水的陶瓷玻璃,含有含水量的涂料始终在上方显示平台OS iOS 16芯片组iOS 16芯片组苹果A16 Bionic A16 Bionic A16 Bionic(4 nm)CPU HEXA蛋白(5核图形)存储卡插槽无内部128GB 6GB RAM,256GB 6GB RAM,512GB 6GB 6GB RAM,1TB 6GB RAM NVME NVME主机
目前,我们从事模型生物体分枝杆菌Smegmatis,一种非感染的快速生长的分枝杆菌,还对结核分枝杆菌的分子表征进行分子表征,一种致病性的慢性增长的结枝杆菌,研究重要的调节性分子在病理源和其他细胞中的重要作用。在其中一个项目中,我们正在研究来自患者样品中敏感,MDR和XDR M.结核病分离株的比较蛋白质组织和转录组学,以阐明耐药性生物标志物和药物靶标。在另一个项目中,我们正在研究高裂解噬菌体的隔离,鉴定和分子表征,以识别和表征其内olysins,它们是针对结核分枝杆菌的一类新型抗菌剂。在另一个项目中,我们正在研究胞质外功能(ECF)Sigma和抗sigma因子在结核分枝杆菌的毒力机制中的作用。我们还在研究结核分枝杆菌中RNA代谢(加工和降解)的分子基础的RNase E RNA降解体。此外,我们还通过制备该酶的几个位置定向的突变体来研究新型的L-天冬酰胺酶的新型R.Etli类。迄今为止,还没有关于这类L-天冬酰胺酶的分子,功能/结构表征的详细报告。它没有细菌L-天冬酰胺酶的特征性活性位点。有足够的机会研究结构方面,以利用其治疗潜力。